Citation: | Yan Cheng, Fumou Sun, Xing Cui, Siegfried Janz. Genetic predisposition to multiple myeloma[J]. Blood&Genomics, 2020, 4(1): 9-18. doi: 10.46701/BG2020012020103 |
[1] |
Kristinsson SY, Bjorkholm M, Goldin LR, et al. Patterns of hematologic malignancies and solid tumors among 37, 838 first-degree relatives of 13, 896 patients with multiple myeloma in Sweden[J]. Int J Cancer, 2009, 125(9): 2147-50. doi: 10.1002/ijc.24514
|
[2] |
Morgan GJ, Johnson DC, Weinhold N, et al. Inherited genetic susceptibility to multiple myeloma[J]. Leukemia, 2014, 28(3): 518-24. doi: 10.1038/leu.2013.344
|
[3] |
Broderick P, Chubb D, Johnson DC, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk[J]. Nat Genet, 2011, 44(1): 58-61.
|
[4] |
Martino A, Campa D, Jamroziak K, et al. Impact of polymorphic variation at 7p15.3, 3p22.1 and 2p23.3 loci on risk of multiple myeloma[J]. Br J Haematol, 2012, 158(6): 805-9. doi: 10.1111/j.1365-2141.2012.09244.x
|
[5] |
Weinhold N, Johnson DC, Chubb D, et al. The CCND1 c. 870G > A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma[J]. Nat Genet, 2013, 45(5): 522-5. doi: 10.1038/ng.2583
|
[6] |
Chubb D, Weinhold N, Broderick P, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk[J]. Nat Genet, 2013, 45(10): 1221-5. doi: 10.1038/ng.2733
|
[7] |
Mitchell JS, Li N, Weinhold N, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma[J]. Nat Commun, 2016, 7: 12050. doi: 10.1038/ncomms12050
|
[8] |
Went M, Sud A, Forsti A, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma[J]. Nat Commun, 2018, 9(1): 3707. doi: 10.1038/s41467-018-04989-w
|
[9] |
Pertesi M, Went M, Hansson M, et al. Genetic predisposition for multiple myeloma[J]. Leukemia, 2020, 34(3): 697-708. doi: 10.1038/s41375-019-0703-6
|
[10] |
Ziv E, Dean E, Hu D, et al. Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients[J]. Nat Commun, 2015, 6: 7539. doi: 10.1038/ncomms8539
|
[11] |
Rajkumar SV, Merlini G, San Miguel JF. Haematological cancer: Redefining myeloma[J]. Nat Rev Clin Oncol, 2012, 9(9): 494-6. doi: 10.1038/nrclinonc.2012.128
|
[12] |
Weinhold N, Johnson DC, Rawstron AC, et al. Inherited genetic susceptibility to monoclonal gammopathy of unknown significance[J]. Blood, 2014, 123(16): 2513-7; quiz 2593. doi: 10.1182/blood-2013-10-532283
|
[13] |
Thomsen H, Campo C, Weinhold N, et al. Genomewide association study on monoclonal gammopathy of unknown significance (MGUS)[J]. Eur J Haematol, 2017, 99(1): 70-9. doi: 10.1111/ejh.12892
|
[14] |
Chattopadhyay S, Thomsen H, Weinhold N, et al. Eight novel loci implicate shared genetic etiology in multiple myeloma, AL amyloidosis, and monoclonal gammopathy of unknown significance[J]. Leukemia, 2020, 34(4): 1187-91. doi: 10.1038/s41375-019-0619-1
|
[15] |
Chattopadhyay S, Thomsen H, da Silva Filho MI, et al. Enrichment of B cell receptor signaling and epidermal growth factor receptor pathways in monoclonal gammopathy of undetermined significance: a genome-wide genetic interaction study[J]. Mol Med, 2018, 24(1): 30. doi: 10.1186/s10020-018-0031-8
|
[16] |
Peng M, Zhao G, Yang F, et al. NCOA1 is a novel susceptibility gene for multiple myeloma in the Chinese population: A case-control study[J]. PLoS One, 2017, 12(3): e0173298. doi: 10.1371/journal.pone.0173298
|
[17] |
Butrym A, Lacina P, Rybka J, et al. Cereblon and IRF4 variants affect risk and response to treatment in multiple myeloma[J]. Arch Immunol Ther Exp (Warsz), 2016, 64(Suppl 1): 151-6. http://europepmc.org/articles/PMC5334380/
|
[18] |
Lacina P, Butrym A, Mazur G, et al. BSG and MCT1 genetic variants influence survival in multiple myeloma patients[J]. Genes (Basel), 2018, 9(5): 226. doi: 10.3390/genes9050226
|
[19] |
Shah V, Boyd KD, Houlston RS, et al. Constitutional mutation in CDKN2A is associated with long term survivorship in multiple myeloma: a case report[J]. BMC Cancer, 2017, 17(1): 718. doi: 10.1186/s12885-017-3715-5
|
[20] |
Campa D, Martino A, Macauda A, et al. Genetic polymorphisms in genes of class switch recombination and multiple myeloma risk and survival: an IMMEnSE study[J]. Leuk Lymphoma, 2019, 60(7): 1803-11. doi: 10.1080/10428194.2018.1551536
|
[21] |
Waller RG, Darlington TM, Wei X, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk[J]. PLoS Genet, 2018, 14(2): e1007111. doi: 10.1371/journal.pgen.1007111
|
[22] |
Bolli N, Barcella M, Salvi E, et al. Next-generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles[J]. Cancer, 2017, 123(19): 3701-8. doi: 10.1002/cncr.30777
|
[23] |
Wei X, Calvo-Vidal MN, Chen S, et al. Germline lysine-specific demethylase 1 (LSD1/KDM1A) mutations confer susceptibility to multiple myeloma[J]. Cancer Res, 2018, 78(10): 2747-59. doi: 10.1158/0008-5472.CAN-17-1900
|
[24] |
Scales M, Chubb D, Dobbins SE, et al. Search for rare protein altering variants influencing susceptibility to multiple myeloma[J]. Oncotarget, 2017, 8(22): 36203-10. doi: 10.18632/oncotarget.15874
|
[25] |
Grass S, Preuss KD, Ahlgrimm M, et al. Association of a dominantly inherited hyperphosphorylated paraprotein target with sporadic and familial multiple myeloma and monoclonal gammopathy of undetermined significance: a case-control study[J]. Lancet Oncol, 2009, 10(10): 950-6. doi: 10.1016/S1470-2045(09)70234-7
|
[26] |
Grass S, Preuss KD, Thome S, et al. Paraproteins of familial MGUS/multiple myeloma target family-typical antigens: hyperphosphorylation of autoantigens is a consistent finding in familial and sporadic MGUS/MM[J]. Blood, 2011, 118(3): 635-7. doi: 10.1182/blood-2011-01-331454
|
[27] |
Preuss KD, Fadle N, Regitz E, et al. Inactivation of protein-phosphatase 2A causing hyperphosphorylation of autoantigenic paraprotein targets in MGUS/MM is due to an exchange of its regulatory subunits[J]. Int J Cancer, 2014, 135(9): 2046-53. doi: 10.1002/ijc.28864
|
[28] |
Nair S, Sng J, Boddupalli CS, et al. Antigen-mediated regulation in monoclonal gammopathies and myeloma[J]. JCI Insight, 2018, 3(8): 98259 doi: 10.1172/jci.insight.98259
|
[29] |
Beksac M, Gragert L, Fingerson S, et al. HLA polymorphism and risk of multiple myeloma[J]. Leukemia, 2016, 30(11): 2260-4. doi: 10.1038/leu.2016.199
|
[30] |
Greenberg AJ, Vachon CM, Rajkumar SV. Disparities in the prevalence, pathogenesis and progression of monoclonal gammopathy of undetermined significance and multiple myeloma between blacks and whites[J]. Leukemia, 2012, 26(4): 609-14. doi: 10.1038/leu.2011.368
|
[31] |
Costa LJ, Brill IK, Omel J, et al. Recent trends in multiple myeloma incidence and survival by age, race, and ethnicity in the United States[J]. Blood Adv, 2017, 1(4): 282-7. doi: 10.1182/bloodadvances.2016002493
|
[32] |
Waxman AJ, Mink PJ, Devesa SS, et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study[J]. Blood, 2010, 116(25): 5501-6. doi: 10.1182/blood-2010-07-298760
|
[33] |
Baughn LB, Pearce K, Larson D, et al. Differences in genomic abnormalities among African individuals with monoclonal gammopathies using calculated ancestry[J]. Blood Cancer J, 2018, 8(10): 96. doi: 10.1038/s41408-018-0132-1
|
[34] |
Rand KA, Song C, Dean E, et al. A meta-analysis of multiple myeloma risk regions in African and European ancestry populations identifies putatively functional loci[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25(12): 1609-18. doi: 10.1158/1055-9965.EPI-15-1193
|
[35] |
Erickson SW, Raj VR, Stephens OW, et al. Genome-wide scan identifies variant in 2q12.3 associated with risk for multiple myeloma[J]. Blood, 2014, 124(12): 2001-3. doi: 10.1182/blood-2014-07-586701
|
[36] |
Weinhold N, Meissner T, Johnson DC, et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells[J]. Haematologica, 2015, 100(3): e110-3. doi: 10.3324/haematol.2014.118786
|
[37] |
Li N, Johnson DC, Weinhold N, et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression[J]. Nat Commun, 2016, 7: 13656. doi: 10.1038/ncomms13656
|
[38] |
Du Z, Weinhold N, Song GC, et al. A meta-analysis of genome-wide association studies of multiple myeloma among men and women of African ancestry[J]. Blood Adv, 2020, 4(1): 181-90. doi: 10.1182/bloodadvances.2019000491
|
[39] |
Manojlovic Z, Christofferson A, Liang WS, et al. Comprehensive molecular profiling of 718 multiple myelomas reveals significant differences in mutation frequencies between African and European descent cases[J]. PLoS Genet, 2017, 13(11): e1007087. doi: 10.1371/journal.pgen.1007087
|
[40] |
Acquaviva J, Chen X, Ren R. IRF-4 functions as a tumor suppressor in early B-cell development[J]. Blood, 2008, 112(9): 3798-806. doi: 10.1182/blood-2007-10-117838
|
[41] |
Iida S, Rao PH, Butler M, et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma[J]. Nat Genet, 1997, 17(2): 226-30. doi: 10.1038/ng1097-226
|
[42] |
Heintel D, Zojer N, Schreder M, et al. Expression of MUM1/IRF4 mRNA as a prognostic marker in patients with multiple myeloma[J]. Leukemia, 2008, 22(2): 441-5. doi: 10.1038/sj.leu.2404895
|
[43] |
Fanzo JC, Yang W, Jang SY, et al. Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity[J]. J Clin Invest, 2006, 116(3): 703-14. doi: 10.1172/JCI24096
|
[44] |
Shaffer AL, Emre NC, Lamy L, et al. IRF4 addiction in multiple myeloma[J]. Nature, 2008, 454(7201): 226-31. doi: 10.1038/nature07064
|
[45] |
Walker BA, Boyle EM, Wardell CP, et al. Mutational spectrum, copy number changes, and outcome: Results of a sequencing study of patients with newly diagnosed myeloma[J]. J Clin Oncol, 2015, 33(33): 3911-20. doi: 10.1200/JCO.2014.59.1503
|
[46] |
Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide[J]. Blood, 2011, 118(18): 4771-9. doi: 10.1182/blood-2011-05-356063
|
[47] |
Zhu YX, Braggio E, Shi CX, et al. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma[J]. Blood, 2014, 124(4): 536-45. doi: 10.1182/blood-2014-02-557819
|
[48] |
Greenberg AJ, Walters DK, Kumar SK, et al. Responsiveness of cytogenetically discrete human myeloma cell lines to lenalidomide: lack of correlation with cereblon and interferon regulatory factor 4 expression levels[J]. Eur J Haematol, 2013, 91(6): 504-13. doi: 10.1111/ejh.12192
|
[49] |
Schuster SR, Kortuem KM, Zhu YX, et al. The clinical significance of cereblon expression in multiple myeloma[J]. Leuk Res, 2014, 38(1): 23-8. doi: 10.1016/j.leukres.2013.08.015
|
[50] |
Lopez-Girona A, Heintel D, Zhang LH, et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response[J]. Br J Haematol, 2011, 154(3): 325-36. doi: 10.1111/j.1365-2141.2011.08689.x
|
[51] |
Blocka J, Durie BGM, Huhn S, et al. Familial cancer: how to successfully recruit families for germline mutations studies? Multiple myeloma as an example[J]. Clin Lymphoma Myeloma Leuk, 2019, 19(10): 635-44 e2. doi: 10.1016/j.clml.2019.06.012
|
[52] |
Liu J, Liu W, Mi L, et al. Incidence and mortality of multiple myeloma in China, 2006-2016: an analysis of the Global Burden of Disease Study 2016[J]. J Hematol Oncol, 2019, 12(1): 136. doi: 10.1186/s13045-019-0807-5
|
[53] |
Ali M, Ajore R, Wihlborg AK, et al. The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression[J]. Nat Commun, 2018, 9(1): 1649. doi: 10.1038/s41467-018-04082-2
|
[54] |
Li N, Johnson DC, Weinhold N, et al. Genetic predisposition to multiple myeloma at 5q15 is mediated by an ELL2 enhancer polymorphism[J]. Cell Rep, 2017, 20(11): 2556-64. doi: 10.1016/j.celrep.2017.08.062
|
[55] |
Shearer JJ, Beane Freeman LE, Liu D, et al. Longitudinal investigation of haematological alterations among permethrin-exposed pesticide applicators in the Biomarkers of Exposure and Effect in Agriculture study[J]. Occup Environ Med, 2019, 76(7): 467-70. doi: 10.1136/oemed-2018-105559
|
[56] |
Tual S, Busson A, Boulanger M, et al. Occupational exposure to pesticides and multiple myeloma in the AGRICAN cohort[J]. Cancer Causes Control, 2019, 30(11): 1243-50. doi: 10.1007/s10552-019-01230-x
|
[57] |
Lincz LF, Scorgie FE, Robertson R, et al. Genetic variations in benzene metabolism and susceptibility to multiple myeloma[J]. Leukemia Res, 2007, 31(6): 759-63. doi: 10.1016/j.leukres.2006.07.012
|