Volume 4 Issue 1
Jun.  2020
Turn off MathJax
Article Contents
Qianfan Liu, Zou Xiang, Haitao Zhu. The transcription factor E2F2 regulates tumor development[J]. Blood&Genomics, 2020, 4(1): 45-52. doi: 10.46701/BG2020012020102
Citation: Qianfan Liu, Zou Xiang, Haitao Zhu. The transcription factor E2F2 regulates tumor development[J]. Blood&Genomics, 2020, 4(1): 45-52. doi: 10.46701/BG2020012020102

The transcription factor E2F2 regulates tumor development

doi: 10.46701/BG2020012020102
More Information
  • Corresponding author: Haitao Zhu, Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China. Tel: +86-13885159100. E-mail: 754667317@qq.com
  • Received Date: 2020-02-21
  • Accepted Date: 2020-04-12
  • Rev Recd Date: 2020-04-07
  • Available Online: 2021-07-01
  • Publish Date: 2020-06-30
  • Cell cycle-related E2F transcription factor 2 (E2F2) is a member of the E2F transcription factor family. E2F2 is implicated in tumorigenesis as it functions as a nuclear transcription factor responsible for regulating cell cycle progression to maintain genomic integrity. In recent decades, substantial experimental evidence has associated the function of E2F2 with tumor promotion. However, this transcription factor has also been revealed to be capable of exerting tumor suppressive activities in certain tumor models. In this review, we discuss recent developments in research that focus on E2F2 with respect to tumorigenesis. We will particularly address the dynamic regulatory roles of microRNA (miRNA) on the expression of E2F2 as various miRNA species have been confirmed to have complementary binding sites in the 3' untranslated region of E2F2.


  • The authors declared no conflict of interests.
  • loading
  • [1]
    Kovesdi I, Reichel R, Nevins JR. Identification of a cellular transcription factor involved in E1A trans-activation[J]. Cell, 1986, 45(2): 219-28. doi: 10.1016/0092-8674(86)90386-7
    Helin K, Lees JA, Vidal M, et al. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F[J]. Cell, 1992, 70(2): 337-50. doi: 10.1016/0092-8674(92)90107-N
    Ivey-Hoyle M, Conroy R, Huber HE, et al. Cloning and characterization of E2F-2, a novel protein with the biochemical properties of transcription factor E2F[J]. Mol Cell Biol, 1993, 13(12): 7802-12. doi: 10.1128/MCB.13.12.7802
    Joyce NC, Harris DL, Mc Alister JC, et al. Effect of overexpressing the transcription factor E2F2 on cell cycle progression in rabbit corneal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2004, 45(5): 1340-8. doi: 10.1167/iovs.03-0335
    Tsantoulis PK, Gorgoulis VG. Involvement of E2F transcription factor family in cancer[J]. Eur J Cancer, 2005, 41(16): 2403-14. doi: 10.1016/j.ejca.2005.08.005
    Muller H, Bracken AP, Vernell R, et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis[J]. Genes Dev, 2001, 15(3): 267-85. doi: 10.1101/gad.864201
    Dick FA, Goodrich DW, Sage J, et al. Non-canonical functions of the RB protein in cancer[J]. Nat Rev Cancer, 2018, 18(7): 442-51. doi: 10.1038/s41568-018-0008-5
    Balciunaite E, Spektor A, Lents NH, et al. Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells[J]. Mol Cell Biol, 2005, 25(18): 8166-78. doi: 10.1128/MCB.25.18.8166-8178.2005
    Uchida C. Roles of pRB in the regulation of nucleosome and chromatin structures[J]. Biomed Res Int, 2016, 2016: 5959721. http://europepmc.org/articles/PMC5215604/
    Yamasaki L, Jacks T, Bronson R, et al. Tumor induction and tissue atrophy in mice lacking E2F-1[J]. Cell, 1996, 85(4): 537-48. doi: 10.1016/S0092-8674(00)81254-4
    Zhu JW, Field SJ, Gore L, et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis[J]. Mol Cell Biol, 2001, 21(24): 8547-64. doi: 10.1128/MCB.21.24.8547-8564.2001
    Mitlianga PG, Kyritsis AP, Gomez-Manzano C, et al. Co-expression of E2F-2 enhances the p53 anti-cancer effect in human glioma cells[J]. Int J Oncol, 2001, 18(2): 343-7. http://europepmc.org/abstract/MED/11172602
    Yuwanita I, Barnes D, Monterey MD, et al. Increased metastasis with loss of E2F2 in Myc-driven tumors[J]. Oncotarget, 2015, 6(35): 38210-24. doi: 10.18632/oncotarget.5690
    Li T, Luo W, Liu K, et al. miR-31 promotes proliferation of colon cancer cells by targeting E2F2[J]. Biotechnol Lett, 2015, 37(3): 523-32. doi: 10.1007/s10529-014-1715-y
    Manicum T, Ni F, Ye Y, et al. Prognostic values of E2F mRNA expression in human gastric cancer[J]. Biosci Rep, 2018, 38(6): BSR20181264. doi: 10.1042/BSR20181264
    Pedroza-Torres A, Romero-Cordoba SL, Justo-Garrido M, et al. MicroRNAs in tumor cell metabolism: Roles and therapeutic opportunities[J]. Front Oncol, 2019, 9: 1404. doi: 10.3389/fonc.2019.01404
    Conti I, Varano G, Simioni C, et al. miRNAs as influencers of cell-cell communication in tumor microenvironment[J]. Cells, 2020, 9(1): 220. doi: 10.3390/cells9010220
    Bursch W, Karwan A, Mayer M, et al. Cell death and autophagy: cytokines, drugs, and nutritional factors[J]. Toxicology, 2008, 254(3): 147-57. doi: 10.1016/j.tox.2008.07.048
    Schnatter AR, Rosamilia K, Wojcik NC. Review of the literature on benzene exposure and leukemia subtypes[J]. Chem Biol Interact, 2005, 153-154: 9-21. doi: 10.1016/j.cbi.2005.03.039
    Hermine O, Ramos JC, Tobinai K. A review of new findings in adult T-cell leukemia-lymphoma: A focus on current and emerging treatment strategies[J]. Adv Ther, 2018, 35(2): 135-52. doi: 10.1007/s12325-018-0658-4
    Neuveut C, Low KG, Maldarelli F, et al. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb[J]. Mol Cell Biol, 1998, 18(6): 3620-32. doi: 10.1128/MCB.18.6.3620
    Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity[J]. Retrovirology, 2004, 1: 20. doi: 10.1186/1742-4690-1-20
    Fischer MA, Moreno-Miralles I, Hunt A, et al. Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence[J]. EMBO J, 2012, 31(6): 1494-505. doi: 10.1038/emboj.2011.500
    Bilousova G, Marusyk A, Porter CC, et al. Impaired DNA replication within progenitor cell pools promotes leukemogenesis[J]. PLoS Biol, 2005, 3(12): e401. doi: 10.1371/journal.pbio.0030401
    Wick W, Platten M. Understanding and treating glioblastoma[J]. Neurol Clin, 2018, 36(3): 485-99. doi: 10.1016/j.ncl.2018.04.006
    Zhang Y, Han D, Wei W, et al. MiR-218 inhibited growth and metabolism of human glioblastoma cells by directly targeting E2F2[J]. Cell Mol Neurobiol, 2015, 35(8): 1165-73. doi: 10.1007/s10571-015-0210-x
    Wu N, Xiao L, Zhao X, et al. miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2[J]. FEBS Lett, 2012, 586(21): 3831-9. doi: 10.1016/j.febslet.2012.08.023
    Gao Y, Han D, Sun L, et al. PPARalpha regulates the proliferation of human glioma cells through miR-214 and E2F2[J]. Biomed Res Int, 2018, 2018: 3842753.
    Song H, Zhang Y, Liu N, et al. Let-7b inhibits the malignant behavior of glioma cells and glioma stem-like cells via downregulation of E2F2[J]. J Physiol Biochem, 2016, 72(4): 733-44. doi: 10.1007/s13105-016-0512-6
    Oser MG, Niederst MJ, Sequist LV, et al. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin[J]. Lancet Oncol, 2015, 16(4): e165-72. doi: 10.1016/S1470-2045(14)71180-5
    Hollern DP, Honeysett J, Cardiff RD, et al. The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast cancer[J]. Mol Cell Biol, 2014, 34(17): 3229-43. doi: 10.1128/MCB.00737-14
    Chen L, Yu JH, Lu ZH, et al. E2F2 induction in related to cell proliferation and poor prognosis in non-small cell lung carcinoma[J]. Int J Clin Exp Pathol, 2015, 8(9): 10545-54. http://pubmedcentralcanada.ca/pmcc/articles/PMC4637579/
    Sun CC, Zhou Q, Hu W, et al. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma[J]. Aging (Albany NY), 2018, 10(5): 973-87. http://www.ncbi.nlm.nih.gov/pubmed/29754146
    Gao Z, Shi R, Yuan K, et al. Expression and prognostic value of E2F activators in NSCLC and subtypes: a research based on bioinformatics analysis[J]. Tumour Biol, 2016, 37(11): 14979-87. doi: 10.1007/s13277-016-5389-z
    Feliciano A, Garcia-Mayea Y, Jubierre L, et al. miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer[J]. Cell Death Dis, 2017, 8(10): e3141. doi: 10.1038/cddis.2017.544
    Li X, Zhang Z, Jiang H, et al. Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer[J]. Cell Physiol Biochem, 2018, 51(5): 2324-40. doi: 10.1159/000495876
    Fahad Ullah M. Breast cancer: Current perspectives on the disease status[J]. Adv Exp Med Biol, 2019, 1152: 51-64. doi: 10.1007%2F978-3-030-20301-6_4
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. doi: 10.3322/caac.21551
    Li Y, Huang J, Yang D, et al. Expression patterns of E2F transcription factors and their potential prognostic roles in breast cancer[J]. Oncol Lett, 2018, 15(6): 9216-30. http://europepmc.org/abstract/MED/29844824
    Rennhack J, Andrechek E. Conserved E2F mediated metastasis in mouse models of breast cancer and HER2 positive patients[J]. Oncoscience, 2015, 2(10): 867-71. doi: 10.18632/oncoscience.259
    Chu J, Li Y, Fan X, et al. MiR-4319 suppress the malignancy of triple-negative breast cancer by regulating self-renewal and tumorigenesis of stem cells[J]. Cell Physiol Biochem, 2018, 48(2): 593-604. doi: 10.1159/000491888
    Bollig-Fischer A, Marchetti L, Mitrea C, et al. Modeling time-dependent transcription effects of HER2 oncogene and discovery of a role for E2F2 in breast cancer cell-matrix adhesion[J]. Bioinformatics, 2014, 30(21): 3036-43. doi: 10.1093/bioinformatics/btu400
    Nguyen-Vu T, Vedin LL, Liu K, et al. Liver x receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism[J]. Breast Cancer Res, 2013, 15(3): R51. doi: 10.1186/bcr3443
    Shen Q, Uray IP, Li Y, et al. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors[J]. Oncogene, 2008, 27(3): 366-77. doi: 10.1038/sj.onc.1210643
    Andrechek ER. HER2/Neu tumorigenesis and metastasis is regulated by E2F activator transcription factors[J]. Oncogene, 2015, 34(2): 217-25. doi: 10.1038/onc.2013.540
    Wu L, de Bruin A, Wang H, et al. Selective roles of E2Fs for ErbB2- and Myc-mediated mammary tumorigenesis[J]. Oncogene, 2015, 34(1): 119-28. doi: 10.1038/onc.2013.511
    Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention[J]. Prz Gastroenterol, 2019, 14(1): 26-38.
    Tarazona N, Gambardella V, Huerta M, et al. Personalised treatment in gastric cancer: Myth or reality[J]? Curr Oncol Rep, 2016, 18(7): 41. doi: 10.1007/s11912-016-0525-x
    Yang L, Zheng R, Wang N, et al. Incidence and mortality of stomach cancer in China, 2014[J]. Chin J Cancer Res, 2018, 30(3): 291-8. doi: 10.21147/j.issn.1000-9604.2018.03.01
    Hu B, El Hajj N, Sittler S, et al. Gastric cancer: Classification, histology and application of molecular pathology[J]. J Gastrointest Oncol, 2012, 3(3): 251-61. http://pubmedcentralcanada.ca/pmcc/articles/PMC3418539/?lang=fr
    Orditura M, Galizia G, Sforza V, et al. Treatment of gastric cancer[J]. World J Gastroenterol, 2014, 20(7): 1635-49. doi: 10.3748/wjg.v20.i7.1635
    Wang H, Zhang X, Liu Y, et al. Downregulated miR-31 level associates with poor prognosis of gastric cancer and its restoration suppresses tumor cell malignant phenotypes by inhibiting E2F2[J]. Oncotarget, 2016, 7(24): 36577-89. doi: 10.18632/oncotarget.9288
    Wen L, Cheng F, Zhou Y, et al. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2[J]. Saudi J Gastroenterol, 2015, 21(5): 313-9. doi: 10.4103/1319-3767.166206
    Chen L, Huang X, Chen X. MiR-365 suppresses cholangiocarcinoma cell proliferation and induces apoptosis by targeting E2F2[J]. Oncol Res, 2018, doi: 10.3727/096504018X15188352857437.
    Dong Y, Zou J, Su S, et al. MicroRNA-218 and microRNA-520a inhibit cell proliferation by downregulating E2F2 in hepatocellular carcinoma[J]. Mol Med Rep, 2015, 12(1): 1016-22. doi: 10.3892/mmr.2015.3516
    Fang ZQ, Li MC, Zhang YQ, et al. MiR-490-5p inhibits the metastasis of hepatocellular carcinoma by down-regulating E2F2 and ECT2[J]. J Cell Biochem, 2018, 119(10): 8317-24. doi: 10.1002/jcb.26876
    Yao Z, Chen Q, Ni Z, et al. Long non-coding RNA differentiation antagonizing nonprotein coding RNA (DANCR) promotes proliferation and invasion of pancreatic cancer by sponging miR-214-5p to regulate E2F2 expression[J]. Med Sci Monit, 2019, 25: 4544-52. doi: 10.12659/MSM.916960
    Mason D, Zhang X, Marques TM, et al. Human papillomavirus 16 E6 modulates the expression of miR-496 in oropharyngeal cancer[J]. Virology, 2018, 521: 149-57. doi: 10.1016/j.virol.2018.05.022
    Tao T, Shen Q, Luo J, et al. MicroRNA-125a regulates cell proliferation via directly targeting E2F2 in osteosarcoma[J]. Cell Physiol Biochem, 2017, 43(2): 768-74. doi: 10.1159/000481560
    Gao Y, Ma X, Yao Y, et al. miR-155 regulates the proliferation and invasion of clear cell renal cell carcinoma cells by targeting E2F2[J]. Oncotarget, 2016, 7(15): 20324-37. doi: 10.18632/oncotarget.7951
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (27) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint