Volume 4 Issue 1
Jun.  2020
Turn off MathJax
Article Contents
Mihaela Gheorghiu. Carbonic anhydrases: hematologic relevance and a biosensing perspective[J]. Blood&Genomics, 2020, 4(1): 19-30. doi: 10.46701/BG2020012019132
Citation: Mihaela Gheorghiu. Carbonic anhydrases: hematologic relevance and a biosensing perspective[J]. Blood&Genomics, 2020, 4(1): 19-30. doi: 10.46701/BG2020012019132

Carbonic anhydrases: hematologic relevance and a biosensing perspective

doi: 10.46701/BG2020012019132
More Information
  • Corresponding author: Mihaela Gheorghiu, International Centre of Biodynamics, Intrarea Portocalelor 1 B, 060101, Bucharest, Romania. E-mail: mgheorghiu@biodyn.ro
  • Received Date: 2019-12-13
  • Accepted Date: 2020-04-30
  • Rev Recd Date: 2020-04-22
  • Available Online: 2021-07-01
  • Publish Date: 2020-06-30
  • Carbonic anhydrases were first identified in red blood cells and have been thus traditionally addressed in a hematological context. However, recently there has been a shift of research interest to therapeutic areas, notably in solid cancers, relegating the impact of carbonic anhydrase function and pathological dysfunction in blood related physiology to secondary importance. This review addresses this paradigm and emphasizes the potential impact of recent studies on blood related carbonic anhydrase isotype expression and modulation in diverse areas such as physiology and pathology, biosensing, their use as biomarkers, and in the development of synthetic blood. A special emphasis is placed on reviewing new dynamic and quantitative studies that allow for the efficient tracking and quantitation of various carbonic anhydrase isozymes within the blood and more generally within the human body, that give new perspectives on the biochemical and physiological role of blood associated carbonic anhydrase in health and pathology.


  • loading
  • [1]
    Boone CD, Pinard M, McKenna R, et al. Catalytic mechanism of alpha-class carbonic anhydrases: CO2 hydration and proton transfer[J]. Subcell Biochem, 2014, 75: 31-52. doi: 10.1007/978-94-007-7359-2_3
    Supuran CT. Carbonic anhydrases and metabolism[J]. Metabolites, 2018, 8(2): 25. doi: 10.3390/metabo8020025
    Del Prete S, Vullo D, Fisher GM, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum-the eta-carbonic anhydrases[J]. Bioorg Med Chem Lett, 2014, 24(18): 4389-96. doi: 10.1016/j.bmcl.2014.08.015
    Del Prete S, Vullo D, De Luca V, et al. Comparison of the sulfonamide inhibition profiles of the alpha-, beta- and gamma-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae[J]. Bioorg Med Chem Lett, 2016, 26(8): 1941-6. doi: 10.1016/j.bmcl.2016.03.014
    Potter CP, Harris AL. Diagnostic, prognostic and therapeutic implications of carbonic anhydrases in cancer[J]. Br J Cancer, 2003, 89(1): 2-7. doi: 10.1038/sj.bjc.6600936
    Ames S, Andring JT, McKenna R, et al. CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells[J]. Oncogene, 2020, 39(8): 1710-23. doi: 10.1038/s41388-019-1098-6
    Becker HM. Carbonic anhydrase IX and acid transport in cancer[J]. Br J Cancer, 2020, 122(2): 157-67. doi: 10.1038/s41416-019-0642-z
    Boron WF. Evaluating the role of carbonic anhydrases in the transport of HCO3--related species[J]. Biochim Biophys Acta, 2010, 1804(2): 410-21. doi: 10.1016/j.bbapap.2009.10.021
    Moini M, Demars SM, Huang H. Analysis of carbonic anhydrase in human red blood cells using capillary electrophoresis/electrospray ionization-mass spectrometry[J]. Anal Chem, 2002, 74(15): 3772-6. doi: 10.1021/ac020022z
    Mboge MY, Mahon BP, McKenna R, et al. Carbonic anhydrases: Role in pH control and cancer[J]. Metabolites, 2018, 8(1): 19. doi: 10.3390/metabo8010019
    Jakubowski M, Szahidewicz-Krupska E, Doroszko A. The human carbonic anhydrase Ⅱ in platelets: An underestimated field of its activity[J]. Biomed Res Int, 2018, 2018: 4548353. http://europepmc.org/articles/PMC6046183/
    Morcos EF, Kussrow A, Enders C, et al. Free-solution interaction assay of carbonic anhydrase to its inhibitors using back-scattering interferometry[J]. Electrophoresis, 2010, 31(22): 3691-5. doi: 10.1002/elps.201000389
    Wang X, Conway W, Burns R, et al. Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution[J]. J Phys Chem A, 2010, 114(4): 1734-40. doi: 10.1021/jp909019u
    Harter TS, Zanuzzo FS, Supuran CT, et al., Functional support for a novel mechanism that enhances tissue oxygen extraction in a teleost fish[J]. Proc Biol Sci, 2019, 286(1903): 20190339. http://www.researchgate.net/publication/333001276_Functional_support_for_a_novel_mechanism_that_enhances_tissue_oxygen_extraction_in_a_teleost_fish
    Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas[J]. Expert Opin Ther Pat, 2018, 28(10): 709-12. doi: 10.1080/13543776.2018.1523897
    Angeli A, Tanini D, Nocentini A, et al. Selenols: a new class of carbonic anhydrase inhibitors[J]. Chem Commun (Camb), 2019, 55(5): 648-51. doi: 10.1039/C8CC08562E
    Supuran CT. Carbonic anhydrase activators[J]. Future Med Chem, 2018, 10(5): 561-73. doi: 10.4155/fmc-2017-0223
    Demirdag R, Yerlikaya E, Kufrevioglu OI. Purification of carbonic anhydrase-Ⅱ from sheep liver and inhibitory effects of some heavy metals on enzyme activity[J]. J Enzyme Inhib Med Chem, 2012, 27(6): 795-9. doi: 10.3109/14756366.2011.615744
    Kuzu M, Çomaklı V, Akkemik E, et al. Inhibitory properties of some heavy metals on carbonic anhydrase I and Ⅱ isozymes activities purified from Van Lake fish (Chalcalburnus Tarichi) gill[J]. Fish Physiol Biochem, 2018, 44(4): 1119-25. doi: 10.1007/s10695-018-0499-8
    Lionetto MG, Caricato R, Giordano ME, et al. Carbonic anhydrase as pollution biomarker: an ancient enzyme with a new use[J]. Int J Environ Res Public Health, 2012, 9(11): 3965-77. doi: 10.3390/ijerph9113965
    Kowalchuk JM, Heigenhauser GJ, Sutton JR, et al. Effect of chronic acetazolamide administration on gas exchange and acid-base control after maximal exercise[J]. J Appl Physiol (1985), 1994, 76(3): 1211-9. doi: 10.1152/jappl.1994.76.3.1211
    Tas M, Senturk E, Ekinci D, et al. Comparison of blood carbonic anhydrase activity of athletes performing interval and continuous running exercise at high altitude[J]. J Enzyme Inhib Med Chem, 2019, 34(1): 218-24. doi: 10.1080/14756366.2018.1545768
    Ekinci D, Fidan İ, Durdagi S, et al. Kinetic and in silico analysis of thiazolidin-based inhibitors of alpha-carbonic anhydrase isoenzymes[J]. J Enzyme Inhib Med Chem, 2013, 28(2): 370-4. doi: 10.3109/14756366.2012.732071
    Imtaiyaz Hassan M, Shajee B, Waheed A, et al. Structure, function and applications of carbonic anhydrase isozymes[J]. Bioorg Med Chem, 2013, 21(6): 1570-82. doi: 10.1016/j.bmc.2012.04.044
    Lukaski HC. Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise[J]. Am J Clin Nutr, 2005, 81(5): 1045-51. doi: 10.1093/ajcn/81.5.1045
    Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies[J]. Annu Rev Biochem, 1995, 64: 375-401. doi: 10.1146/annurev.bi.64.070195.002111
    Sundaram V, Rumbolo P, Grubb J, et al. Carbonic anhydrase Ⅱ deficiency: diagnosis and carrier detection using differential enzyme inhibition and inactivation[J]. Am J Hum Genet, 1986, 38(2): 125-36. http://gut.bmj.com/lookup/external-ref?access_num=3080873&link_type=MED&atom=%2Fgutjnl%2F54%2F2%2F274.atom
    Roth DE, Venta PJ, Tashian RE, et al. Molecular basis of human carbonic anhydrase Ⅱ deficiency[J]. Proc Natl Acad Sci U S A, 1992, 89(5): 1804-8. doi: 10.1073/pnas.89.5.1804
    Cammer W, Zhang H, Tansey FA. Effects of carbonic anhydrase Ⅱ (CAⅡ) deficiency on CNS structure and function in the myelin-deficient CAⅡ-deficient double mutant mouse[J]. J Neurosci Res, 1995, 40(4): 451-7. doi: 10.1002/jnr.490400404
    McMahon C, Will A, Hu P, et al. Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase Ⅱ deficiency syndrome[J]. Blood, 2001, 97(7): 1947-50. doi: 10.1182/blood.V97.7.1947
    Supuran CT. Carbonic anhydrase inhibitors and activators for novel therapeutic applications[J]. Future Med Chem, 2011, 3(9): 1165-80. doi: 10.4155/fmc.11.69
    Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors[J]. J Enzyme Inhib Med Chem, 2012, 27(6): 759-72. doi: 10.3109/14756366.2012.672983
    Tars K, Vullo D, Kazaks A, et al. Sulfocoumarins (1, 2-benzoxathiine-2, 2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases[J]. J Med Chem, 2013, 56(1): 293-300. doi: 10.1021/jm301625s
    Gheorghiu E. Characterizing cellular systems by means of dielectric spectroscopy[J]. Bioelectromagnetics, 1996, 17(6): 475-82. doi: 10.1002/(SICI)1521-186X(1996)17:6<475::AID-BEM7>3.0.CO;2-0
    Gheorghiu E. On the limits of ellipsoidal models when analyzing dielectric behavior of living cells. Emphasis on red blood cells[J]. Ann N Y Acad Sci, 1999, 873: 262-8. doi: 10.1111/j.1749-6632.1999.tb09474.x
    Zamanova S, Shabana AM, Mondal UK, et al. Carbonic anhydrases as disease markers[J]. Expert Opin Ther Pat, 2019, 29(7): 509-33. doi: 10.1080/13543776.2019.1629419
    Beckman KA, Luchs J, Milner MS. Making the diagnosis of Sjogren's syndrome in patients with dry eye[J]. Clin Ophthalmol, 2016, 10: 43-53. http://pubmedcentralcanada.ca/pmcc/articles/PMC4699514/
    Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review[J]. Expert Opin Ther Pat, 2013, 23(6): 725-35. doi: 10.1517/13543776.2013.790957
    Pettersen EO, Ebbesen P, Gieling RG, et al. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium[J]. J Enzyme Inhib Med Chem, 2015, 30(5): 689-721. doi: 10.3109/14756366.2014.966704
    Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia[J]. Ann N Y Acad Sci, 1999, 873: 65-71. doi: 10.1111/j.1749-6632.1999.tb09450.x
    Sadik OA, Xu H, Gheorghiu E, et al. Differential impedance spectroscopy for monitoring protein immobilization and antibody-antigen reactions[J]. Anal Chem, 2002, 74(13): 3142-50. doi: 10.1021/ac0156722
    Solesio ME, Peixoto PM, Debure L, et al. Carbonic anhydrase inhibition selectively prevents amyloid beta neurovascular mitochondrial toxicity[J]. Aging Cell, 2018, 17(4): e12787. doi: 10.1111/acel.12787
    Saada MC, Montero JL, Vullo D, et al. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms[J]. J Med Chem, 2011, 54(5): 1170-7. doi: 10.1021/jm101284a
    Jang BG, Yun SM, Ahn K, et al. Plasma carbonic anhydrase Ⅱ protein is elevated in Alzheimer's disease[J]. J Alzheimers Dis, 2010, 21(3): 939-45. doi: 10.3233/JAD-2010-100384
    Henkin RI, Potolicchio SJ, Levy LM, et al. Carbonic anhydrase I, Ⅱ, and VI, blood plasma, erythrocyte and saliva zinc and copper increase after repetitive transcranial magnetic stimulation[J]. Am J Med Sci, 2010, 339(3): 249-57. doi: 10.1097/MAJ.0b013e3181cda0e3
    Fossati S, Giannoni P, Solesio ME, et al. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain[J]. Neurobiol Dis, 2016, 86: 29-40. doi: 10.1016/j.nbd.2015.11.006
    Chen YY, Lai YJ, Yen YF, et al. Association between normal tension glaucoma and the risk of Alzheimer's disease: a nationwide population-based cohort study in Taiwan[J]. BMJ Open, 2018, 8(11): e022987. doi: 10.1136/bmjopen-2018-022987
    Xu C, Lo A, Yammanuru A, et al. Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology[J]. PLoS One, 2010, 5(3): e9625. doi: 10.1371/journal.pone.0009625
    Ghosh T, Mastrangelo CH. Fast measurement of binding kinetics with dual slope SPR microchips[J]. Analyst, 2012, 137(10): 2381-5. doi: 10.1039/c2an35045a
    Mehand MS, De Crescenzo G, Srinivasan B. Increasing throughput of surface plasmon resonance-based biosensors by multiple analyte injections[J]. J Mol Recognit, 2012, 25(4): 208-15. doi: 10.1002/jmr.2172
    Vasilescu A, Gaspar S, Mihai I, et al. Development of a label-free aptasensor for monitoring the self-association of lysozyme[J]. Analyst, 2013, 138(12): 3530-7. doi: 10.1039/c3an00229b
    Rogez-Florent T, Duhamel L, Goossens L, et al. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays[J]. J Mol Recognit, 2014, 27(1): 46-56. doi: 10.1002/jmr.2330
    Si Mehand M, De Crescenzo G, Srinivasan B. On-line kinetic model discrimination for optimized surface plasmon resonance experiments[J]. J Mol Recognit, 2014, 27(5): 276-84. doi: 10.1002/jmr.2358
    Bornhop DJ, Kammer MN, Kussrow A, et al. Origin and prediction of free-solution interaction studies performed label-free[J]. Proc Natl Acad Sci U S A, 2016, 113(12): E1595-604. doi: 10.1073/pnas.1515706113
    Eng L, Nygren-Babol L, Hanning A. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments[J]. Anal Biochem, 2016, 510: 79-87. doi: 10.1016/j.ab.2016.06.008
    Vasilescu A, Purcarea C, Popa E, et al. Versatile SPR aptasensor for detection of lysozyme dimer in oligomeric and aggregated mixtures[J]. Biosens Bioelectron, 2016, 83: 353-60. doi: 10.1016/j.bios.2016.04.080
    David S, Polonschii C, Gheorghiu M, et al. Biosensing based on magneto-optical surface plasmon resonance[J]. Methods Mol Biol, 2017, 1571: 73-88. http://europepmc.org/abstract/MED/28281250
    Vasilescu A, Gáspár S, Gheorghiu M, et al. Surface plasmon resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces[J]. Biosens Bioelectron, 2017. 89(Pt 1): 525-31. http://europepmc.org/abstract/MED/27037159
    Yang J, Koruza K, Fisher Z, et al. Improved molecular recognition of carbonic anhydrase IX by polypeptide conjugation to acetazolamide[J]. Bioorg Med Chem, 2017, 25(20): 5838-48. doi: 10.1016/j.bmc.2017.09.017
    Botrè F, Mazzei F. Interactions between carbonic anhydrase and some decarboxylating enzymes as studied by a new bioelectrochemical approach[J]. Bioelectrochem Bioenerg, 1999, 48(2): 463-7. doi: 10.1016/S0302-4598(99)00004-5
    Stanica L, Gheorghiu M, Stan M, et al. Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays[J]. J Enzyme Inhib Med Chem, 2017, 32(1): 1079-90. doi: 10.1080/14756366.2017.1355306
    Chang TM. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond[J]. Artif Cells Blood Substit Immobil Biotechnol, 2012, 40(3): 197-9. doi: 10.3109/10731199.2012.662408
    Sen Gupta A. Bio-inspired nanomedicine strategies for artificial blood components[J]. WIREs Nanomed Nanobiotechnol, 2017, 9(6): e1464. doi: 10.1002/wnan.1464
    Sneddon D, Niemans R, Bauwens M, et al. Synthesis and in vivo biological evaluation of (68)Ga-labeled carbonic anhydrase IX targeting small molecules for positron emission tomography[J]. J Med Chem, 2016, 59(13): 6431-43. doi: 10.1021/acs.jmedchem.6b00623
    Nocentini A, Carta F, Ceruso M, et al. Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XⅡ[J]. Bioorg Med Chem, 2015, 23(21): 6955-66. doi: 10.1016/j.bmc.2015.09.041
    Mishra CB, Kumari S, Angeli A, et al. Discovery of potent anti-convulsant carbonic anhydrase inhibitors: Design, synthesis, in vitro and in vivo appraisal[J]. Eur J Med Chem, 2018, 156: 430-43. doi: 10.1016/j.ejmech.2018.07.019
    Karalı N, Akdemir A, Göktaş F, et al. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases[J]. Bioorg Med Chem, 2017, 25(14): 3714-8. doi: 10.1016/j.bmc.2017.05.029
    Ibrahim HS, Allam HA, Mahmoud WR, et al. Dual-tail arylsulfone-based benzenesulfonamides differently match the hydrophobic and hydrophilic halves of human carbonic anhydrases active sites: Selective inhibitors for the tumor-associated hCA IX isoform[J]. Eur J Med Chem, 2018, 152: 1-9. doi: 10.1016/j.ejmech.2018.04.016
    Cornelio B, Laronze-Cochard M, Miambo R, et al. 5-Arylisothiazol-3(2H)-one-1, (1)-(di)oxides: A new class of selective tumor-associated carbonic anhydrases (hCA IX and XⅡ) inhibitors[J]. Eur J Med Chem, 2019, 175: 40-8. doi: 10.1016/j.ejmech.2019.04.072
    Singh M, Nesakumar N, Sethuraman S, et al. Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood[J]. J Colloid Interface Sci, 2014, 425: 52-8. doi: 10.1016/j.jcis.2014.03.041
    Luo Z, Zheng M, Zhao P, et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy[J]. Sci Rep, 2016, 6: 23393. doi: 10.1038/srep23393
    Hekman MC, Rijpkema M, Muselaers CH, et al. Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: A first in man study[J]. Theranostics, 2018, 8(8): 2161-70. doi: 10.7150/thno.23335
    Lionetto MG, Caricato R, Giordano ME, et al. The complex relationship between metals and carbonic anhydrase: New insights and perspectives[J]. Int J Mol Sci, 2016, 17(1): 127. doi: 10.3390/ijms17010127
    Caricato R, Giordano ME, Schettino T, et al. Carbonic anhydrase integrated into a multimarker approach for the detection of the stress status induced by pollution exposure in Mytilus galloprovincialis: A field case study[J]. Sci Total Environ, 2019, 690: 140-50. doi: 10.1016/j.scitotenv.2019.06.446
    Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors[J]. Expert Opin Drug Metab Toxicol, 2016, 12(4): 423-31. doi: 10.1517/17425255.2016.1154534
    Singh, S. A QSAR study on novel series of carbonic anhydrase inhibitors hCA IX-tumor-associated (hypoxia)[J]. Med Chem, 2012, 8(4): 656-72. doi: 10.2174/157340612801216391
    Obeidat YM, Cheng MH, Catandi G, et al. Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples[J]. Biosens Bioelectron, 2019, 133: 39-47. doi: 10.1016/j.bios.2019.02.069
    Bourais I, Maliki S, Mohammadi H, et al. Investigation of sulfonamides inhibition of carbonic anhydrase enzyme using multiphotometric and electrochemical techniques[J]. Enzyme Microb Technol, 2017, 96: 23-9. doi: 10.1016/j.enzmictec.2016.09.007
    Gheorghiu M, Stanica L, Polonschii C, et al. Modulation of cellular reactivity for enhanced cell-based biosensing[J]. Anal Chem, 2020, 92(1): 806-14. doi: 10.1021/acs.analchem.9b03217
    Aspatwar A, Haapanen S, Parkkila S. An Update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii[J]. Metabolites, 2018, 8(1): 22. doi: 10.3390/metabo8010022
    Bondarenko A, Cortés-Salazar F, Gheorghiu M, et al. Electrochemical push-pull probe: from scanning electrochemical microscopy to multimodal altering of cell microenvironment[J]. Anal Chem, 2015, 87(8): 4479-86. doi: 10.1021/acs.analchem.5b00455
    Munteanu RE, Stǎnicǎ L, Gheorghiu M, et al. Measurement of the extracellular pH of adherently growing mammalian cells with high spatial resolution using a voltammetric pH microsensor[J]. Anal Chem, 2018, 90(11): 6899-905. doi: 10.1021/acs.analchem.8b01124
    Munteanu RE, Ye R, Polonschii C, et al. High spatial resolution electrochemical biosensing using reflected light microscopy[J]. Sci Rep, 2019, 9(1): 15196. doi: 10.1038/s41598-019-50949-9
    Ruff, A. Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts[J]. Curr Opin Electrochem, 2017, 5(1): 66-73. doi: 10.1016/j.coelec.2017.06.007
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (35) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint