Volume 4 Issue 1
Jun.  2020
Turn off MathJax
Article Contents
Mihaela Gheorghiu. Carbonic anhydrases: hematologic relevance and a biosensing perspective[J]. Blood&Genomics, 2020, 4(1): 19-30. doi: 10.46701/BG2020012019132
Citation: Mihaela Gheorghiu. Carbonic anhydrases: hematologic relevance and a biosensing perspective[J]. Blood&Genomics, 2020, 4(1): 19-30. doi: 10.46701/BG2020012019132

Carbonic anhydrases: hematologic relevance and a biosensing perspective

doi: 10.46701/BG2020012019132
More Information
  • Corresponding author: Mihaela Gheorghiu, International Centre of Biodynamics, Intrarea Portocalelor 1 B, 060101, Bucharest, Romania. E-mail: mgheorghiu@biodyn.ro
  • Received Date: 2019-12-13
  • Accepted Date: 2020-04-30
  • Rev Recd Date: 2020-04-22
  • Available Online: 2021-07-01
  • Publish Date: 2020-06-30
  • Carbonic anhydrases were first identified in red blood cells and have been thus traditionally addressed in a hematological context. However, recently there has been a shift of research interest to therapeutic areas, notably in solid cancers, relegating the impact of carbonic anhydrase function and pathological dysfunction in blood related physiology to secondary importance. This review addresses this paradigm and emphasizes the potential impact of recent studies on blood related carbonic anhydrase isotype expression and modulation in diverse areas such as physiology and pathology, biosensing, their use as biomarkers, and in the development of synthetic blood. A special emphasis is placed on reviewing new dynamic and quantitative studies that allow for the efficient tracking and quantitation of various carbonic anhydrase isozymes within the blood and more generally within the human body, that give new perspectives on the biochemical and physiological role of blood associated carbonic anhydrase in health and pathology.

     

  • loading
  • [1]
    Boone CD, Pinard M, McKenna R, et al. Catalytic mechanism of alpha-class carbonic anhydrases: CO2 hydration and proton transfer[J]. Subcell Biochem, 2014, 75: 31-52. doi: 10.1007/978-94-007-7359-2_3
    [2]
    Supuran CT. Carbonic anhydrases and metabolism[J]. Metabolites, 2018, 8(2): 25. doi: 10.3390/metabo8020025
    [3]
    Del Prete S, Vullo D, Fisher GM, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum-the eta-carbonic anhydrases[J]. Bioorg Med Chem Lett, 2014, 24(18): 4389-96. doi: 10.1016/j.bmcl.2014.08.015
    [4]
    Del Prete S, Vullo D, De Luca V, et al. Comparison of the sulfonamide inhibition profiles of the alpha-, beta- and gamma-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae[J]. Bioorg Med Chem Lett, 2016, 26(8): 1941-6. doi: 10.1016/j.bmcl.2016.03.014
    [5]
    Potter CP, Harris AL. Diagnostic, prognostic and therapeutic implications of carbonic anhydrases in cancer[J]. Br J Cancer, 2003, 89(1): 2-7. doi: 10.1038/sj.bjc.6600936
    [6]
    Ames S, Andring JT, McKenna R, et al. CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells[J]. Oncogene, 2020, 39(8): 1710-23. doi: 10.1038/s41388-019-1098-6
    [7]
    Becker HM. Carbonic anhydrase IX and acid transport in cancer[J]. Br J Cancer, 2020, 122(2): 157-67. doi: 10.1038/s41416-019-0642-z
    [8]
    Boron WF. Evaluating the role of carbonic anhydrases in the transport of HCO3--related species[J]. Biochim Biophys Acta, 2010, 1804(2): 410-21. doi: 10.1016/j.bbapap.2009.10.021
    [9]
    Moini M, Demars SM, Huang H. Analysis of carbonic anhydrase in human red blood cells using capillary electrophoresis/electrospray ionization-mass spectrometry[J]. Anal Chem, 2002, 74(15): 3772-6. doi: 10.1021/ac020022z
    [10]
    Mboge MY, Mahon BP, McKenna R, et al. Carbonic anhydrases: Role in pH control and cancer[J]. Metabolites, 2018, 8(1): 19. doi: 10.3390/metabo8010019
    [11]
    Jakubowski M, Szahidewicz-Krupska E, Doroszko A. The human carbonic anhydrase Ⅱ in platelets: An underestimated field of its activity[J]. Biomed Res Int, 2018, 2018: 4548353. http://europepmc.org/articles/PMC6046183/
    [12]
    Morcos EF, Kussrow A, Enders C, et al. Free-solution interaction assay of carbonic anhydrase to its inhibitors using back-scattering interferometry[J]. Electrophoresis, 2010, 31(22): 3691-5. doi: 10.1002/elps.201000389
    [13]
    Wang X, Conway W, Burns R, et al. Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution[J]. J Phys Chem A, 2010, 114(4): 1734-40. doi: 10.1021/jp909019u
    [14]
    Harter TS, Zanuzzo FS, Supuran CT, et al., Functional support for a novel mechanism that enhances tissue oxygen extraction in a teleost fish[J]. Proc Biol Sci, 2019, 286(1903): 20190339. http://www.researchgate.net/publication/333001276_Functional_support_for_a_novel_mechanism_that_enhances_tissue_oxygen_extraction_in_a_teleost_fish
    [15]
    Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas[J]. Expert Opin Ther Pat, 2018, 28(10): 709-12. doi: 10.1080/13543776.2018.1523897
    [16]
    Angeli A, Tanini D, Nocentini A, et al. Selenols: a new class of carbonic anhydrase inhibitors[J]. Chem Commun (Camb), 2019, 55(5): 648-51. doi: 10.1039/C8CC08562E
    [17]
    Supuran CT. Carbonic anhydrase activators[J]. Future Med Chem, 2018, 10(5): 561-73. doi: 10.4155/fmc-2017-0223
    [18]
    Demirdag R, Yerlikaya E, Kufrevioglu OI. Purification of carbonic anhydrase-Ⅱ from sheep liver and inhibitory effects of some heavy metals on enzyme activity[J]. J Enzyme Inhib Med Chem, 2012, 27(6): 795-9. doi: 10.3109/14756366.2011.615744
    [19]
    Kuzu M, Çomaklı V, Akkemik E, et al. Inhibitory properties of some heavy metals on carbonic anhydrase I and Ⅱ isozymes activities purified from Van Lake fish (Chalcalburnus Tarichi) gill[J]. Fish Physiol Biochem, 2018, 44(4): 1119-25. doi: 10.1007/s10695-018-0499-8
    [20]
    Lionetto MG, Caricato R, Giordano ME, et al. Carbonic anhydrase as pollution biomarker: an ancient enzyme with a new use[J]. Int J Environ Res Public Health, 2012, 9(11): 3965-77. doi: 10.3390/ijerph9113965
    [21]
    Kowalchuk JM, Heigenhauser GJ, Sutton JR, et al. Effect of chronic acetazolamide administration on gas exchange and acid-base control after maximal exercise[J]. J Appl Physiol (1985), 1994, 76(3): 1211-9. doi: 10.1152/jappl.1994.76.3.1211
    [22]
    Tas M, Senturk E, Ekinci D, et al. Comparison of blood carbonic anhydrase activity of athletes performing interval and continuous running exercise at high altitude[J]. J Enzyme Inhib Med Chem, 2019, 34(1): 218-24. doi: 10.1080/14756366.2018.1545768
    [23]
    Ekinci D, Fidan İ, Durdagi S, et al. Kinetic and in silico analysis of thiazolidin-based inhibitors of alpha-carbonic anhydrase isoenzymes[J]. J Enzyme Inhib Med Chem, 2013, 28(2): 370-4. doi: 10.3109/14756366.2012.732071
    [24]
    Imtaiyaz Hassan M, Shajee B, Waheed A, et al. Structure, function and applications of carbonic anhydrase isozymes[J]. Bioorg Med Chem, 2013, 21(6): 1570-82. doi: 10.1016/j.bmc.2012.04.044
    [25]
    Lukaski HC. Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise[J]. Am J Clin Nutr, 2005, 81(5): 1045-51. doi: 10.1093/ajcn/81.5.1045
    [26]
    Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies[J]. Annu Rev Biochem, 1995, 64: 375-401. doi: 10.1146/annurev.bi.64.070195.002111
    [27]
    Sundaram V, Rumbolo P, Grubb J, et al. Carbonic anhydrase Ⅱ deficiency: diagnosis and carrier detection using differential enzyme inhibition and inactivation[J]. Am J Hum Genet, 1986, 38(2): 125-36. http://gut.bmj.com/lookup/external-ref?access_num=3080873&link_type=MED&atom=%2Fgutjnl%2F54%2F2%2F274.atom
    [28]
    Roth DE, Venta PJ, Tashian RE, et al. Molecular basis of human carbonic anhydrase Ⅱ deficiency[J]. Proc Natl Acad Sci U S A, 1992, 89(5): 1804-8. doi: 10.1073/pnas.89.5.1804
    [29]
    Cammer W, Zhang H, Tansey FA. Effects of carbonic anhydrase Ⅱ (CAⅡ) deficiency on CNS structure and function in the myelin-deficient CAⅡ-deficient double mutant mouse[J]. J Neurosci Res, 1995, 40(4): 451-7. doi: 10.1002/jnr.490400404
    [30]
    McMahon C, Will A, Hu P, et al. Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase Ⅱ deficiency syndrome[J]. Blood, 2001, 97(7): 1947-50. doi: 10.1182/blood.V97.7.1947
    [31]
    Supuran CT. Carbonic anhydrase inhibitors and activators for novel therapeutic applications[J]. Future Med Chem, 2011, 3(9): 1165-80. doi: 10.4155/fmc.11.69
    [32]
    Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors[J]. J Enzyme Inhib Med Chem, 2012, 27(6): 759-72. doi: 10.3109/14756366.2012.672983
    [33]
    Tars K, Vullo D, Kazaks A, et al. Sulfocoumarins (1, 2-benzoxathiine-2, 2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases[J]. J Med Chem, 2013, 56(1): 293-300. doi: 10.1021/jm301625s
    [34]
    Gheorghiu E. Characterizing cellular systems by means of dielectric spectroscopy[J]. Bioelectromagnetics, 1996, 17(6): 475-82. doi: 10.1002/(SICI)1521-186X(1996)17:6<475::AID-BEM7>3.0.CO;2-0
    [35]
    Gheorghiu E. On the limits of ellipsoidal models when analyzing dielectric behavior of living cells. Emphasis on red blood cells[J]. Ann N Y Acad Sci, 1999, 873: 262-8. doi: 10.1111/j.1749-6632.1999.tb09474.x
    [36]
    Zamanova S, Shabana AM, Mondal UK, et al. Carbonic anhydrases as disease markers[J]. Expert Opin Ther Pat, 2019, 29(7): 509-33. doi: 10.1080/13543776.2019.1629419
    [37]
    Beckman KA, Luchs J, Milner MS. Making the diagnosis of Sjogren's syndrome in patients with dry eye[J]. Clin Ophthalmol, 2016, 10: 43-53. http://pubmedcentralcanada.ca/pmcc/articles/PMC4699514/
    [38]
    Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review[J]. Expert Opin Ther Pat, 2013, 23(6): 725-35. doi: 10.1517/13543776.2013.790957
    [39]
    Pettersen EO, Ebbesen P, Gieling RG, et al. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium[J]. J Enzyme Inhib Med Chem, 2015, 30(5): 689-721. doi: 10.3109/14756366.2014.966704
    [40]
    Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia[J]. Ann N Y Acad Sci, 1999, 873: 65-71. doi: 10.1111/j.1749-6632.1999.tb09450.x
    [41]
    Sadik OA, Xu H, Gheorghiu E, et al. Differential impedance spectroscopy for monitoring protein immobilization and antibody-antigen reactions[J]. Anal Chem, 2002, 74(13): 3142-50. doi: 10.1021/ac0156722
    [42]
    Solesio ME, Peixoto PM, Debure L, et al. Carbonic anhydrase inhibition selectively prevents amyloid beta neurovascular mitochondrial toxicity[J]. Aging Cell, 2018, 17(4): e12787. doi: 10.1111/acel.12787
    [43]
    Saada MC, Montero JL, Vullo D, et al. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms[J]. J Med Chem, 2011, 54(5): 1170-7. doi: 10.1021/jm101284a
    [44]
    Jang BG, Yun SM, Ahn K, et al. Plasma carbonic anhydrase Ⅱ protein is elevated in Alzheimer's disease[J]. J Alzheimers Dis, 2010, 21(3): 939-45. doi: 10.3233/JAD-2010-100384
    [45]
    Henkin RI, Potolicchio SJ, Levy LM, et al. Carbonic anhydrase I, Ⅱ, and VI, blood plasma, erythrocyte and saliva zinc and copper increase after repetitive transcranial magnetic stimulation[J]. Am J Med Sci, 2010, 339(3): 249-57. doi: 10.1097/MAJ.0b013e3181cda0e3
    [46]
    Fossati S, Giannoni P, Solesio ME, et al. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain[J]. Neurobiol Dis, 2016, 86: 29-40. doi: 10.1016/j.nbd.2015.11.006
    [47]
    Chen YY, Lai YJ, Yen YF, et al. Association between normal tension glaucoma and the risk of Alzheimer's disease: a nationwide population-based cohort study in Taiwan[J]. BMJ Open, 2018, 8(11): e022987. doi: 10.1136/bmjopen-2018-022987
    [48]
    Xu C, Lo A, Yammanuru A, et al. Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology[J]. PLoS One, 2010, 5(3): e9625. doi: 10.1371/journal.pone.0009625
    [49]
    Ghosh T, Mastrangelo CH. Fast measurement of binding kinetics with dual slope SPR microchips[J]. Analyst, 2012, 137(10): 2381-5. doi: 10.1039/c2an35045a
    [50]
    Mehand MS, De Crescenzo G, Srinivasan B. Increasing throughput of surface plasmon resonance-based biosensors by multiple analyte injections[J]. J Mol Recognit, 2012, 25(4): 208-15. doi: 10.1002/jmr.2172
    [51]
    Vasilescu A, Gaspar S, Mihai I, et al. Development of a label-free aptasensor for monitoring the self-association of lysozyme[J]. Analyst, 2013, 138(12): 3530-7. doi: 10.1039/c3an00229b
    [52]
    Rogez-Florent T, Duhamel L, Goossens L, et al. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays[J]. J Mol Recognit, 2014, 27(1): 46-56. doi: 10.1002/jmr.2330
    [53]
    Si Mehand M, De Crescenzo G, Srinivasan B. On-line kinetic model discrimination for optimized surface plasmon resonance experiments[J]. J Mol Recognit, 2014, 27(5): 276-84. doi: 10.1002/jmr.2358
    [54]
    Bornhop DJ, Kammer MN, Kussrow A, et al. Origin and prediction of free-solution interaction studies performed label-free[J]. Proc Natl Acad Sci U S A, 2016, 113(12): E1595-604. doi: 10.1073/pnas.1515706113
    [55]
    Eng L, Nygren-Babol L, Hanning A. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments[J]. Anal Biochem, 2016, 510: 79-87. doi: 10.1016/j.ab.2016.06.008
    [56]
    Vasilescu A, Purcarea C, Popa E, et al. Versatile SPR aptasensor for detection of lysozyme dimer in oligomeric and aggregated mixtures[J]. Biosens Bioelectron, 2016, 83: 353-60. doi: 10.1016/j.bios.2016.04.080
    [57]
    David S, Polonschii C, Gheorghiu M, et al. Biosensing based on magneto-optical surface plasmon resonance[J]. Methods Mol Biol, 2017, 1571: 73-88. http://europepmc.org/abstract/MED/28281250
    [58]
    Vasilescu A, Gáspár S, Gheorghiu M, et al. Surface plasmon resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces[J]. Biosens Bioelectron, 2017. 89(Pt 1): 525-31. http://europepmc.org/abstract/MED/27037159
    [59]
    Yang J, Koruza K, Fisher Z, et al. Improved molecular recognition of carbonic anhydrase IX by polypeptide conjugation to acetazolamide[J]. Bioorg Med Chem, 2017, 25(20): 5838-48. doi: 10.1016/j.bmc.2017.09.017
    [60]
    Botrè F, Mazzei F. Interactions between carbonic anhydrase and some decarboxylating enzymes as studied by a new bioelectrochemical approach[J]. Bioelectrochem Bioenerg, 1999, 48(2): 463-7. doi: 10.1016/S0302-4598(99)00004-5
    [61]
    Stanica L, Gheorghiu M, Stan M, et al. Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays[J]. J Enzyme Inhib Med Chem, 2017, 32(1): 1079-90. doi: 10.1080/14756366.2017.1355306
    [62]
    Chang TM. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond[J]. Artif Cells Blood Substit Immobil Biotechnol, 2012, 40(3): 197-9. doi: 10.3109/10731199.2012.662408
    [63]
    Sen Gupta A. Bio-inspired nanomedicine strategies for artificial blood components[J]. WIREs Nanomed Nanobiotechnol, 2017, 9(6): e1464. doi: 10.1002/wnan.1464
    [64]
    Sneddon D, Niemans R, Bauwens M, et al. Synthesis and in vivo biological evaluation of (68)Ga-labeled carbonic anhydrase IX targeting small molecules for positron emission tomography[J]. J Med Chem, 2016, 59(13): 6431-43. doi: 10.1021/acs.jmedchem.6b00623
    [65]
    Nocentini A, Carta F, Ceruso M, et al. Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XⅡ[J]. Bioorg Med Chem, 2015, 23(21): 6955-66. doi: 10.1016/j.bmc.2015.09.041
    [66]
    Mishra CB, Kumari S, Angeli A, et al. Discovery of potent anti-convulsant carbonic anhydrase inhibitors: Design, synthesis, in vitro and in vivo appraisal[J]. Eur J Med Chem, 2018, 156: 430-43. doi: 10.1016/j.ejmech.2018.07.019
    [67]
    Karalı N, Akdemir A, Göktaş F, et al. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases[J]. Bioorg Med Chem, 2017, 25(14): 3714-8. doi: 10.1016/j.bmc.2017.05.029
    [68]
    Ibrahim HS, Allam HA, Mahmoud WR, et al. Dual-tail arylsulfone-based benzenesulfonamides differently match the hydrophobic and hydrophilic halves of human carbonic anhydrases active sites: Selective inhibitors for the tumor-associated hCA IX isoform[J]. Eur J Med Chem, 2018, 152: 1-9. doi: 10.1016/j.ejmech.2018.04.016
    [69]
    Cornelio B, Laronze-Cochard M, Miambo R, et al. 5-Arylisothiazol-3(2H)-one-1, (1)-(di)oxides: A new class of selective tumor-associated carbonic anhydrases (hCA IX and XⅡ) inhibitors[J]. Eur J Med Chem, 2019, 175: 40-8. doi: 10.1016/j.ejmech.2019.04.072
    [70]
    Singh M, Nesakumar N, Sethuraman S, et al. Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood[J]. J Colloid Interface Sci, 2014, 425: 52-8. doi: 10.1016/j.jcis.2014.03.041
    [71]
    Luo Z, Zheng M, Zhao P, et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy[J]. Sci Rep, 2016, 6: 23393. doi: 10.1038/srep23393
    [72]
    Hekman MC, Rijpkema M, Muselaers CH, et al. Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: A first in man study[J]. Theranostics, 2018, 8(8): 2161-70. doi: 10.7150/thno.23335
    [73]
    Lionetto MG, Caricato R, Giordano ME, et al. The complex relationship between metals and carbonic anhydrase: New insights and perspectives[J]. Int J Mol Sci, 2016, 17(1): 127. doi: 10.3390/ijms17010127
    [74]
    Caricato R, Giordano ME, Schettino T, et al. Carbonic anhydrase integrated into a multimarker approach for the detection of the stress status induced by pollution exposure in Mytilus galloprovincialis: A field case study[J]. Sci Total Environ, 2019, 690: 140-50. doi: 10.1016/j.scitotenv.2019.06.446
    [75]
    Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors[J]. Expert Opin Drug Metab Toxicol, 2016, 12(4): 423-31. doi: 10.1517/17425255.2016.1154534
    [76]
    Singh, S. A QSAR study on novel series of carbonic anhydrase inhibitors hCA IX-tumor-associated (hypoxia)[J]. Med Chem, 2012, 8(4): 656-72. doi: 10.2174/157340612801216391
    [77]
    Obeidat YM, Cheng MH, Catandi G, et al. Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples[J]. Biosens Bioelectron, 2019, 133: 39-47. doi: 10.1016/j.bios.2019.02.069
    [78]
    Bourais I, Maliki S, Mohammadi H, et al. Investigation of sulfonamides inhibition of carbonic anhydrase enzyme using multiphotometric and electrochemical techniques[J]. Enzyme Microb Technol, 2017, 96: 23-9. doi: 10.1016/j.enzmictec.2016.09.007
    [79]
    Gheorghiu M, Stanica L, Polonschii C, et al. Modulation of cellular reactivity for enhanced cell-based biosensing[J]. Anal Chem, 2020, 92(1): 806-14. doi: 10.1021/acs.analchem.9b03217
    [80]
    Aspatwar A, Haapanen S, Parkkila S. An Update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii[J]. Metabolites, 2018, 8(1): 22. doi: 10.3390/metabo8010022
    [81]
    Bondarenko A, Cortés-Salazar F, Gheorghiu M, et al. Electrochemical push-pull probe: from scanning electrochemical microscopy to multimodal altering of cell microenvironment[J]. Anal Chem, 2015, 87(8): 4479-86. doi: 10.1021/acs.analchem.5b00455
    [82]
    Munteanu RE, Stǎnicǎ L, Gheorghiu M, et al. Measurement of the extracellular pH of adherently growing mammalian cells with high spatial resolution using a voltammetric pH microsensor[J]. Anal Chem, 2018, 90(11): 6899-905. doi: 10.1021/acs.analchem.8b01124
    [83]
    Munteanu RE, Ye R, Polonschii C, et al. High spatial resolution electrochemical biosensing using reflected light microscopy[J]. Sci Rep, 2019, 9(1): 15196. doi: 10.1038/s41598-019-50949-9
    [84]
    Ruff, A. Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts[J]. Curr Opin Electrochem, 2017, 5(1): 66-73. doi: 10.1016/j.coelec.2017.06.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (35) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return