Volume 4 Issue 1
Jun.  2020
Turn off MathJax
Article Contents
Eugen Gheorghiu. Electrical impedance assays of blood cells[J]. Blood&Genomics, 2020, 4(1): 1-8. doi: 10.46701/BG2020012019123
Citation: Eugen Gheorghiu. Electrical impedance assays of blood cells[J]. Blood&Genomics, 2020, 4(1): 1-8. doi: 10.46701/BG2020012019123

Electrical impedance assays of blood cells

doi: 10.46701/BG2020012019123
More Information
  • Corresponding author: Eugen Gheorghiu, International Centre of Biodynamics, Intrarea Portocalelor, 1B, 060101 Bucharest, Romania. E-mail: egheorghiu@biodyn.ro
  • Received Date: 2019-08-29
  • Accepted Date: 2020-01-17
  • Rev Recd Date: 2019-11-11
  • Available Online: 2021-07-01
  • Publish Date: 2020-06-30
  • In this review, the capability of electrical impedance spectroscopy analysis of blood cells, especially for red blood cells is presented, highlighting its large area of related biomedical relevance. The method is briefly introduced and basic theoretical aspects are discussed by considering both phenomenological (e.g. equivalent circuit) and microscopic approaches. The latter include a comparative analysis of the relevance of considering real shape (consistent with microscopic observations) versus spheroidal approximations (prolate and oblate spheroids) with the same surface and volume concentration. We show that while ellipsoidal approximation is fairly good for randomly oriented cells, it is quite poor whenever oriented cells are measured. The voluminous literature on the electrical analysis of blood cells is reviewed to stress the most promising biomedical applications of the method either per se or in combination with complementary e.g. (micro) fluidic approaches.

     

  • Abbreviations: electrical impedance spectroscopy (EIS), red blood cells (RBCs), white blood cells (WBCs), red blood cell aggregation (RBCa), sample under test (SUT), geometric factor of the SUT(GESUT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), cardiovascular diseases (CVDs), prothrombin time (PT), partial thromboplastin time (PTT), and thrombin clotting time (TCT), electric impedance microflow cytometry (EIMC), sickle cell disease (SCD), acquired immunodeficiency syndrome (AIDS).
  • loading
  • [1]
    Pradhan R, Mitra A, Das S. Impedimetric characterization of human blood using three-electrode based ECIS devices[J]. J Electr Bioimpedance, 2012, 3: 12-9. http://www.oalib.com/paper/2046521
    [2]
    Song Y, Huang YY, Liu X, et al. Point-of-care technologies for molecular diagnostics using a drop of blood[J]. Trends Biotechnol, 2014, 32(3): 132-9. doi: 10.1016/j.tibtech.2014.01.003
    [3]
    Mauricio CRM, Schneider FK, Takahira RK, et al. Image-based red blood cell counter for multiple species of wild and domestic animals[J]. Arq Bras Med Vet Zootec, 2017, 69: 75-84. doi: 10.1590/1678-4162-8544
    [4]
    Zhao TX. New applications of electrical impedance of human blood[J]. J Med Eng Technol, 1996, 20(3): 115-20. doi: 10.3109/03091909609008389
    [5]
    Stewart GN. Researches on the circulation time and on the influences which affect it[J]. J Physiol, 1897, 22: 158-83. http://europepmc.org/abstract/MED/16992112
    [6]
    Höber R. Ein zweites verfahren die leitfaehigkeit im innern von zellen ze messem[J]. Arch Ges Physiol, 1912, 148: 189-221. doi: 10.1007/BF01680784
    [7]
    Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems[J]. Phys Rev, 1925, 26: 678-81. doi: 10.1103/PhysRev.26.678
    [8]
    Fricke H. The electric capacity of suspensions with special reference to blood[J]. J Gen Physiol, 1925, 9: 137-52. doi: 10.1085/jgp.9.2.137
    [9]
    Fricke H. The electric impedance of haemolysed suspensions of mammalian erythrocytes[J]. J Gen Physiol, 1934, 18: 821-36. http://www.ncbi.nlm.nih.gov/pubmed/19872891
    [10]
    Fricke H, Morse S. The electric resistance and capacity of blood for frequencies between 800 and 4.5 million cycles[J]. J Gen Physiol, 1925, 9: 153-67. doi: 10.1085/jgp.9.2.153
    [11]
    Cole KS. Electric impedance of suspensions of spheres[J]. J Gen Physiol, 1928, 12: 29-36. doi: 10.1085/jgp.12.1.29
    [12]
    Coulter WH. Means for counting particles suspended in a fluid[P]. Patent 2.656.508, 27 Aug. 1949, 20 Oct. 1953. Chicago, Ill: United States Patent Office, 1953.
    [13]
    Schwan HP. Electrical properties of blood and its constituents-alternating current spectroscopy[J]. Blut, 1983, 46: 185-97. doi: 10.1007/BF00320638
    [14]
    Wolf M, Gulich R, Lunkenheimer P, et al. Broadband dielectric spectroscopy on human blood[J]. Biochim Biophys Acta Gen Subj, 2011, 1810(8): 727-40. doi: 10.1016/j.bbagen.2011.05.012
    [15]
    Vosika ZB, Lazovic GM, Misevic GN, et al. Fractional calculus model of electrical impedance applied to human skin[J]. PLoS One, 2013, 8(4): e59483. doi: 10.1371/journal.pone.0059483
    [16]
    David S, Polonschii C, Gheorghiu M, et al. Assessment of pathogenic bacteria using periodic actuation[J]. Lab Chip, 2013, 13: 3192-8. doi: 10.1039/c3lc50411e
    [17]
    Gheorghiu E. Characterizing cellular systems by means of dielectric spectroscopy[J]. Bioelectromagnetics, 1996, 17(6): 475-82. doi: 10.1002/(SICI)1521-186X(1996)17:6<475::AID-BEM7>3.0.CO;2-0
    [18]
    Gheorghiu E, Asami K. Monitoring cell cycle by impedance spectroscopy: experimental and theoretical aspects[J]. Bioelectrochem Bioenerg, 1998, 45: 139-43. doi: 10.1016/S0302-4598(98)00084-1
    [19]
    Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia[J]. Ann N Y Acad Sci, 1999, 873: 65-71. doi: 10.1111/j.1749-6632.1999.tb09450.x
    [20]
    Vrinceanu D, Gheorghiu E. Shape effects on the dielectric behaviour of arbitrarily shaped particles with particular reference to biological cells[J]. Bioelectrochem Bioenerg, 1996, 40: 167-70. doi: 10.1016/0302-4598(96)05068-4
    [21]
    Gheorghiu E. On the limits of ellipsoidal models when analyzing dielectric behavior of living cells emphasis on red blood cells[J]. Ann N Y Acad Sci, 1999, 873: 262-8. doi: 10.1111/j.1749-6632.1999.tb09474.x
    [22]
    Gheorghiu E, Balut C, Gheorghiu M, Dielectric behaviour of gap junction connected cells: a microscopic approach[J]. Phys Med Biol, 2002, 47: 341-8. doi: 10.1088/0031-9155/47/2/312
    [23]
    Sandu T, Vrinceanu D, Gheorghiu E. Linear dielectric response of clustered living cells[J]. Phys Rev EStat Nonlin Soft Matter Phys, 2010, 81: 0219131. http://europepmc.org/abstract/MED/20365601
    [24]
    Huisjes R, Bogdanova A, van Solinge WW, et al. Squeezing for life-properties of red blood cell deformability[J]. Front Physiol, 2018, 9: 656. doi: 10.3389/fphys.2018.00656
    [25]
    Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics[J]. Biomicrofluidics, 2014, 8: 051501. doi: 10.1063/1.4895755
    [26]
    Sullivan E. Hematology analyzer: From workhorse to thoroughbred[J]. Lab Med, 2006, 37: 273-8. doi: 10.1309/TMQ6T4CBCG408141
    [27]
    Wen J, Wan N, Bao H, et al. Quantitative measurement and evaluation of red blood cell aggregation in normal blood based on a modified Hanai equation[J]. Sensors, 2019, 19(5): 1095. doi: 10.3390/s19051095
    [28]
    Lei KF, Chen KH, Tsui PH, et al. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip[J]. PLoS One, 2013, 8(10): e76243. doi: 10.1371/journal.pone.0076243
    [29]
    Üyüklü M. Measurement of impedance values of different erythrocyte suspensions[J]. Bezmialem Science, 2019, 7(3): 233-9. doi: 10.14235/bas.galenos.2018.2842
    [30]
    Wagner C, Steffen P, Svetina S. Aggregation of red blood cells: from rouleaux to clot formation[J]. Comptes Rendus Physique, 2013, 14: 459. doi: 10.1016/j.crhy.2013.04.004
    [31]
    Derganc J, Bozic B, Svetina S, et al. Equilibrium shapes of erythrocytes in rouleaux formation[J]. BiophysJ, 2003, 84: 1486-92. doi: 10.1016/S0006-3495(03)74961-3
    [32]
    Zhbanov A, Yang S. Electrochemical impedance spectroscopy of blood for sensitive detection of blood hematocrit, sedimentation and dielectric properties[J]. Anal Methods, 2017, 9: 3302-13. doi: 10.1039/C7AY00714K
    [33]
    Li J, Wan N, Wen J, et al. Quantitative detection and evaluation of thrombus formation based on electrical impedance spectroscopy[J]. Biosens Bioelectron, 2019, 141: 111437. doi: 10.1016/j.bios.2019.111437
    [34]
    Spence N. Electrical impedance measurement as an endpoint detection method for routine coagulation tests[J]. Br J Biomed Sci, 2002, 59(4): 223-7. doi: 10.1080/09674845.2002.11783664
    [35]
    Lei KF, Chen KH, Tsui PH, et al. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip[J]. PLoS One, 2013, 8, e76243. doi: 10.1371/journal.pone.0076243
    [36]
    Kang YJ. Microfluidic-based measurement method of red blood cell aggregation under hematocrit variations[J]. Sensors, 2017, 17: 2037. doi: 10.3390/s17092037
    [37]
    Flormann D. Physical characterization of red blood cell aggregation[D]. Homburg: Saarland University, 2017
    [38]
    Pop GAM, Hop WJ. Blood electrical impedance closely matches whole blood viscosity as parameter of hemorheology and inflammation[J]. Appl Rheol, 2003, 13: 305-12. doi: 10.1515/arh-2003-0020
    [39]
    Baskurt OK, Baskurt OK, Meiselman HJ. Time course of electrical impedance during red blood cell aggregation in a glass tube: Comparison with light transmittance[J]. IEEE Trans Biomed Eng, 2010, 57: 969-78. doi: 10.1109/TBME.2009.2036598
    [40]
    Balan C, Balut C, Gheorghe L, et al. Experimental determination of blood permittivity and conductivity in simple shear flow[J]. Clin Hemorheol Microcirc, 2004, 30: 359. http://www.ncbi.nlm.nih.gov/pubmed/15258367
    [41]
    Saldanha C, Silva-Herdade AS. Physiological properties of erythrocytes in inflammation[J]. J Cell Biotechnol, 2017, 3: 15-20. doi: 10.3233/JCB-179003
    [42]
    Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, et al. Red blood cell rheology in sepsis[J]. Intensive Care Med, 2003, 29: 1052-61. doi: 10.1007/s00134-003-1783-2
    [43]
    Bateman RM, Sharpe MD, Singer M, et al. The effect of sepsis on the erythrocyte[J]. Int J Mol Sci, 2017, 18(9): 1932-55. doi: 10.3390/ijms18091932
    [44]
    Simsek FG, Ulgen Y. Electrical impedance of human blood with and without anticoagulants in the β dispersion region[J]. Eng Med Biol Soc, 2012, 2012: 3262-4. http://www.ncbi.nlm.nih.gov/pubmed/23366622
    [45]
    Ulgen Y, Sezdi M. Physiological quality assessment of stored whole blood by means of electrical measurements[J]. Med Bio Eng Comput, 2007, 45: 653-60. doi: 10.1007/s11517-007-0206-x
    [46]
    Zhao TX, Shanwell A. Electrical impedance alterations of red blood cells during storage[J]. Vox Sang, 1994, 66: 258-63. doi: 10.1111/j.1423-0410.1994.tb00325.x
    [47]
    Zhao TX, Jacobson B, Ribbe T. Triple frequency method for measuring blood impedance[J]. Physiol Meas, 1993, 14: 145-56. doi: 10.1088/0967-3334/14/2/006
    [48]
    Piety NZ, Reinhart WH, Pourreau PH, et al. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network[J]. Transfusion, 2016, 56(4): 844-51. doi: 10.1111/trf.13449
    [49]
    Sosa JM, Nielsen ND, Vignes SM, et al. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network[J]. Clin Hemorheol Microcirc, 2013, 57: 275-89. http://europepmc.org/abstract/med/23603326
    [50]
    Kaoui B, Biros G, Misbah C. Why do red blood cells have asymmetric shapes even in a symmetric flow?[J]. Phys Rev Let, 2009, 103(18): 188101. doi: 10.1103/PhysRevLett.103.188101
    [51]
    Du E, Ha S, Diez-Silva M, et al. Electric impedance microflow cytometry for characterization of cell disease states[J]. Lab Chip, 2013, 13(19): 3903-9. doi: 10.1039/c3lc50540e
    [52]
    Ribaut C, Reybier K, Reynes O, et al. Electrochemical impedance spectroscopy to study physiological changes affecting the red blood cell after invasion by malaria parasites[J]. Biosens Bioelectron, 2009, 24: 2721-5. doi: 10.1016/j.bios.2008.12.018
    [53]
    Esfandyarpour R, Kashi A, Nemat-Gorgani M, et al. A nano electronics-blood-based diagnostic biomarker for myalgic encephalomyelitis /chronic fatigue syndrome (ME/CFS)[J]. Proc Natl Acad Sci USA, 2019, 116: 10250-7. doi: 10.1073/pnas.1901274116
    [54]
    Liu J, Qiang Y, Alvarez O, et al. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells[J]. Sens Actuators B, 2018, 255: 2392-8. doi: 10.1016/j.snb.2017.08.163
    [55]
    Liu J, Qiang Y, Alvarez O, et al. Electrical impedance characterization of erythrocyte response to cyclic hypoxia in sickle cell disease[J]. ACS Sensors, 2019, 4(7): 1783-90. doi: 10.1021/acssensors.9b00263
    [56]
    Holmes D, Morgan H. Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels[J]. Anal Chem, 2010, 82: 1455-61. doi: 10.1021/ac902568p
    [57]
    Yun SH, Sim EH, Goh RY, et al. Platelet activation: The mechanisms and potential biomarkers[J]. Biomed Res Int, 2016, 2016: 9060143. http://downloads.hindawi.com/journals/bmri/aip/9060143.pdf
    [58]
    Ghoshal K, Bhattacharyya M. Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis[J]. Sci World J, 2014, 2014: 781857. http://europepmc.org/articles/PMC3960550
    [59]
    Mitsui C, Kajiwara K, Hayashi H, et al. Platelet activation markers overexpressed specifically in patients with aspirin-exacerbated respiratory disease[J]. J Allergy Clin Immunol, 2016, 137(2): 400-11. doi: 10.1016/j.jaci.2015.05.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return