Volume 4 Issue 1
Jun.  2020
Turn off MathJax
Article Contents
Eugen Gheorghiu. Electrical impedance assays of blood cells[J]. Blood&Genomics, 2020, 4(1): 1-8. doi: 10.46701/BG2020012019123
Citation: Eugen Gheorghiu. Electrical impedance assays of blood cells[J]. Blood&Genomics, 2020, 4(1): 1-8. doi: 10.46701/BG2020012019123

Electrical impedance assays of blood cells

doi: 10.46701/BG2020012019123
More Information
  • Corresponding author: Eugen Gheorghiu, International Centre of Biodynamics, Intrarea Portocalelor, 1B, 060101 Bucharest, Romania. E-mail: egheorghiu@biodyn.ro
  • Received Date: 2019-08-29
  • Accepted Date: 2020-01-17
  • Rev Recd Date: 2019-11-11
  • Available Online: 2021-07-01
  • Publish Date: 2020-06-30
  • In this review, the capability of electrical impedance spectroscopy analysis of blood cells, especially for red blood cells is presented, highlighting its large area of related biomedical relevance. The method is briefly introduced and basic theoretical aspects are discussed by considering both phenomenological (e.g. equivalent circuit) and microscopic approaches. The latter include a comparative analysis of the relevance of considering real shape (consistent with microscopic observations) versus spheroidal approximations (prolate and oblate spheroids) with the same surface and volume concentration. We show that while ellipsoidal approximation is fairly good for randomly oriented cells, it is quite poor whenever oriented cells are measured. The voluminous literature on the electrical analysis of blood cells is reviewed to stress the most promising biomedical applications of the method either per se or in combination with complementary e.g. (micro) fluidic approaches.


  • Abbreviations: electrical impedance spectroscopy (EIS), red blood cells (RBCs), white blood cells (WBCs), red blood cell aggregation (RBCa), sample under test (SUT), geometric factor of the SUT(GESUT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), cardiovascular diseases (CVDs), prothrombin time (PT), partial thromboplastin time (PTT), and thrombin clotting time (TCT), electric impedance microflow cytometry (EIMC), sickle cell disease (SCD), acquired immunodeficiency syndrome (AIDS).
  • loading
  • [1]
    Pradhan R, Mitra A, Das S. Impedimetric characterization of human blood using three-electrode based ECIS devices[J]. J Electr Bioimpedance, 2012, 3: 12-9. http://www.oalib.com/paper/2046521
    Song Y, Huang YY, Liu X, et al. Point-of-care technologies for molecular diagnostics using a drop of blood[J]. Trends Biotechnol, 2014, 32(3): 132-9. doi: 10.1016/j.tibtech.2014.01.003
    Mauricio CRM, Schneider FK, Takahira RK, et al. Image-based red blood cell counter for multiple species of wild and domestic animals[J]. Arq Bras Med Vet Zootec, 2017, 69: 75-84. doi: 10.1590/1678-4162-8544
    Zhao TX. New applications of electrical impedance of human blood[J]. J Med Eng Technol, 1996, 20(3): 115-20. doi: 10.3109/03091909609008389
    Stewart GN. Researches on the circulation time and on the influences which affect it[J]. J Physiol, 1897, 22: 158-83. http://europepmc.org/abstract/MED/16992112
    Höber R. Ein zweites verfahren die leitfaehigkeit im innern von zellen ze messem[J]. Arch Ges Physiol, 1912, 148: 189-221. doi: 10.1007/BF01680784
    Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems[J]. Phys Rev, 1925, 26: 678-81. doi: 10.1103/PhysRev.26.678
    Fricke H. The electric capacity of suspensions with special reference to blood[J]. J Gen Physiol, 1925, 9: 137-52. doi: 10.1085/jgp.9.2.137
    Fricke H. The electric impedance of haemolysed suspensions of mammalian erythrocytes[J]. J Gen Physiol, 1934, 18: 821-36. http://www.ncbi.nlm.nih.gov/pubmed/19872891
    Fricke H, Morse S. The electric resistance and capacity of blood for frequencies between 800 and 4.5 million cycles[J]. J Gen Physiol, 1925, 9: 153-67. doi: 10.1085/jgp.9.2.153
    Cole KS. Electric impedance of suspensions of spheres[J]. J Gen Physiol, 1928, 12: 29-36. doi: 10.1085/jgp.12.1.29
    Coulter WH. Means for counting particles suspended in a fluid[P]. Patent 2.656.508, 27 Aug. 1949, 20 Oct. 1953. Chicago, Ill: United States Patent Office, 1953.
    Schwan HP. Electrical properties of blood and its constituents-alternating current spectroscopy[J]. Blut, 1983, 46: 185-97. doi: 10.1007/BF00320638
    Wolf M, Gulich R, Lunkenheimer P, et al. Broadband dielectric spectroscopy on human blood[J]. Biochim Biophys Acta Gen Subj, 2011, 1810(8): 727-40. doi: 10.1016/j.bbagen.2011.05.012
    Vosika ZB, Lazovic GM, Misevic GN, et al. Fractional calculus model of electrical impedance applied to human skin[J]. PLoS One, 2013, 8(4): e59483. doi: 10.1371/journal.pone.0059483
    David S, Polonschii C, Gheorghiu M, et al. Assessment of pathogenic bacteria using periodic actuation[J]. Lab Chip, 2013, 13: 3192-8. doi: 10.1039/c3lc50411e
    Gheorghiu E. Characterizing cellular systems by means of dielectric spectroscopy[J]. Bioelectromagnetics, 1996, 17(6): 475-82. doi: 10.1002/(SICI)1521-186X(1996)17:6<475::AID-BEM7>3.0.CO;2-0
    Gheorghiu E, Asami K. Monitoring cell cycle by impedance spectroscopy: experimental and theoretical aspects[J]. Bioelectrochem Bioenerg, 1998, 45: 139-43. doi: 10.1016/S0302-4598(98)00084-1
    Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia[J]. Ann N Y Acad Sci, 1999, 873: 65-71. doi: 10.1111/j.1749-6632.1999.tb09450.x
    Vrinceanu D, Gheorghiu E. Shape effects on the dielectric behaviour of arbitrarily shaped particles with particular reference to biological cells[J]. Bioelectrochem Bioenerg, 1996, 40: 167-70. doi: 10.1016/0302-4598(96)05068-4
    Gheorghiu E. On the limits of ellipsoidal models when analyzing dielectric behavior of living cells emphasis on red blood cells[J]. Ann N Y Acad Sci, 1999, 873: 262-8. doi: 10.1111/j.1749-6632.1999.tb09474.x
    Gheorghiu E, Balut C, Gheorghiu M, Dielectric behaviour of gap junction connected cells: a microscopic approach[J]. Phys Med Biol, 2002, 47: 341-8. doi: 10.1088/0031-9155/47/2/312
    Sandu T, Vrinceanu D, Gheorghiu E. Linear dielectric response of clustered living cells[J]. Phys Rev EStat Nonlin Soft Matter Phys, 2010, 81: 0219131. http://europepmc.org/abstract/MED/20365601
    Huisjes R, Bogdanova A, van Solinge WW, et al. Squeezing for life-properties of red blood cell deformability[J]. Front Physiol, 2018, 9: 656. doi: 10.3389/fphys.2018.00656
    Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics[J]. Biomicrofluidics, 2014, 8: 051501. doi: 10.1063/1.4895755
    Sullivan E. Hematology analyzer: From workhorse to thoroughbred[J]. Lab Med, 2006, 37: 273-8. doi: 10.1309/TMQ6T4CBCG408141
    Wen J, Wan N, Bao H, et al. Quantitative measurement and evaluation of red blood cell aggregation in normal blood based on a modified Hanai equation[J]. Sensors, 2019, 19(5): 1095. doi: 10.3390/s19051095
    Lei KF, Chen KH, Tsui PH, et al. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip[J]. PLoS One, 2013, 8(10): e76243. doi: 10.1371/journal.pone.0076243
    Üyüklü M. Measurement of impedance values of different erythrocyte suspensions[J]. Bezmialem Science, 2019, 7(3): 233-9. doi: 10.14235/bas.galenos.2018.2842
    Wagner C, Steffen P, Svetina S. Aggregation of red blood cells: from rouleaux to clot formation[J]. Comptes Rendus Physique, 2013, 14: 459. doi: 10.1016/j.crhy.2013.04.004
    Derganc J, Bozic B, Svetina S, et al. Equilibrium shapes of erythrocytes in rouleaux formation[J]. BiophysJ, 2003, 84: 1486-92. doi: 10.1016/S0006-3495(03)74961-3
    Zhbanov A, Yang S. Electrochemical impedance spectroscopy of blood for sensitive detection of blood hematocrit, sedimentation and dielectric properties[J]. Anal Methods, 2017, 9: 3302-13. doi: 10.1039/C7AY00714K
    Li J, Wan N, Wen J, et al. Quantitative detection and evaluation of thrombus formation based on electrical impedance spectroscopy[J]. Biosens Bioelectron, 2019, 141: 111437. doi: 10.1016/j.bios.2019.111437
    Spence N. Electrical impedance measurement as an endpoint detection method for routine coagulation tests[J]. Br J Biomed Sci, 2002, 59(4): 223-7. doi: 10.1080/09674845.2002.11783664
    Lei KF, Chen KH, Tsui PH, et al. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip[J]. PLoS One, 2013, 8, e76243. doi: 10.1371/journal.pone.0076243
    Kang YJ. Microfluidic-based measurement method of red blood cell aggregation under hematocrit variations[J]. Sensors, 2017, 17: 2037. doi: 10.3390/s17092037
    Flormann D. Physical characterization of red blood cell aggregation[D]. Homburg: Saarland University, 2017
    Pop GAM, Hop WJ. Blood electrical impedance closely matches whole blood viscosity as parameter of hemorheology and inflammation[J]. Appl Rheol, 2003, 13: 305-12. doi: 10.1515/arh-2003-0020
    Baskurt OK, Baskurt OK, Meiselman HJ. Time course of electrical impedance during red blood cell aggregation in a glass tube: Comparison with light transmittance[J]. IEEE Trans Biomed Eng, 2010, 57: 969-78. doi: 10.1109/TBME.2009.2036598
    Balan C, Balut C, Gheorghe L, et al. Experimental determination of blood permittivity and conductivity in simple shear flow[J]. Clin Hemorheol Microcirc, 2004, 30: 359. http://www.ncbi.nlm.nih.gov/pubmed/15258367
    Saldanha C, Silva-Herdade AS. Physiological properties of erythrocytes in inflammation[J]. J Cell Biotechnol, 2017, 3: 15-20. doi: 10.3233/JCB-179003
    Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, et al. Red blood cell rheology in sepsis[J]. Intensive Care Med, 2003, 29: 1052-61. doi: 10.1007/s00134-003-1783-2
    Bateman RM, Sharpe MD, Singer M, et al. The effect of sepsis on the erythrocyte[J]. Int J Mol Sci, 2017, 18(9): 1932-55. doi: 10.3390/ijms18091932
    Simsek FG, Ulgen Y. Electrical impedance of human blood with and without anticoagulants in the β dispersion region[J]. Eng Med Biol Soc, 2012, 2012: 3262-4. http://www.ncbi.nlm.nih.gov/pubmed/23366622
    Ulgen Y, Sezdi M. Physiological quality assessment of stored whole blood by means of electrical measurements[J]. Med Bio Eng Comput, 2007, 45: 653-60. doi: 10.1007/s11517-007-0206-x
    Zhao TX, Shanwell A. Electrical impedance alterations of red blood cells during storage[J]. Vox Sang, 1994, 66: 258-63. doi: 10.1111/j.1423-0410.1994.tb00325.x
    Zhao TX, Jacobson B, Ribbe T. Triple frequency method for measuring blood impedance[J]. Physiol Meas, 1993, 14: 145-56. doi: 10.1088/0967-3334/14/2/006
    Piety NZ, Reinhart WH, Pourreau PH, et al. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network[J]. Transfusion, 2016, 56(4): 844-51. doi: 10.1111/trf.13449
    Sosa JM, Nielsen ND, Vignes SM, et al. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network[J]. Clin Hemorheol Microcirc, 2013, 57: 275-89. http://europepmc.org/abstract/med/23603326
    Kaoui B, Biros G, Misbah C. Why do red blood cells have asymmetric shapes even in a symmetric flow?[J]. Phys Rev Let, 2009, 103(18): 188101. doi: 10.1103/PhysRevLett.103.188101
    Du E, Ha S, Diez-Silva M, et al. Electric impedance microflow cytometry for characterization of cell disease states[J]. Lab Chip, 2013, 13(19): 3903-9. doi: 10.1039/c3lc50540e
    Ribaut C, Reybier K, Reynes O, et al. Electrochemical impedance spectroscopy to study physiological changes affecting the red blood cell after invasion by malaria parasites[J]. Biosens Bioelectron, 2009, 24: 2721-5. doi: 10.1016/j.bios.2008.12.018
    Esfandyarpour R, Kashi A, Nemat-Gorgani M, et al. A nano electronics-blood-based diagnostic biomarker for myalgic encephalomyelitis /chronic fatigue syndrome (ME/CFS)[J]. Proc Natl Acad Sci USA, 2019, 116: 10250-7. doi: 10.1073/pnas.1901274116
    Liu J, Qiang Y, Alvarez O, et al. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells[J]. Sens Actuators B, 2018, 255: 2392-8. doi: 10.1016/j.snb.2017.08.163
    Liu J, Qiang Y, Alvarez O, et al. Electrical impedance characterization of erythrocyte response to cyclic hypoxia in sickle cell disease[J]. ACS Sensors, 2019, 4(7): 1783-90. doi: 10.1021/acssensors.9b00263
    Holmes D, Morgan H. Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels[J]. Anal Chem, 2010, 82: 1455-61. doi: 10.1021/ac902568p
    Yun SH, Sim EH, Goh RY, et al. Platelet activation: The mechanisms and potential biomarkers[J]. Biomed Res Int, 2016, 2016: 9060143. http://downloads.hindawi.com/journals/bmri/aip/9060143.pdf
    Ghoshal K, Bhattacharyya M. Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis[J]. Sci World J, 2014, 2014: 781857. http://europepmc.org/articles/PMC3960550
    Mitsui C, Kajiwara K, Hayashi H, et al. Platelet activation markers overexpressed specifically in patients with aspirin-exacerbated respiratory disease[J]. J Allergy Clin Immunol, 2016, 137(2): 400-11. doi: 10.1016/j.jaci.2015.05.041
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint