Volume 7 Issue 1
Jun.  2023
Turn off MathJax
Article Contents
Dezhi Huang, Yang Gou, Xiaoqi Wang, Qiong Li, Xinlei Li, Naya Ma, Yishuo Duan, Jun Rao, Xi Zhang. A bibliometric analysis and visualization of spatially resolved transcriptomics[J]. Blood&Genomics, 2023, 7(1): 22-33. doi: 10.46701/BG.2023012023006
Citation: Dezhi Huang, Yang Gou, Xiaoqi Wang, Qiong Li, Xinlei Li, Naya Ma, Yishuo Duan, Jun Rao, Xi Zhang. A bibliometric analysis and visualization of spatially resolved transcriptomics[J]. Blood&Genomics, 2023, 7(1): 22-33. doi: 10.46701/BG.2023012023006

A bibliometric analysis and visualization of spatially resolved transcriptomics

doi: 10.46701/BG.2023012023006
More Information
  • Corresponding author: Jun Rao and Xi Zhang, Medical Center of Hematology, Xinqiao Hospital, Army Medical University, 83 Xinqiaozheng Street, Shapingba District, Chongqing 400037, China. E-mails: raojun1129@126.com and zhangxxi@sina.com
  • Received Date: 2023-03-04
  • Rev Recd Date: 2023-04-23
  • Accepted Date: 2023-06-08
  • Available Online: 2023-07-05
  • Publish Date: 2023-06-30
  • This research aims to analyze the research status, hotspots, and future development trends of spatially resolved transcriptomics (SRT). We obtained research publications on SRT from the Web of Science Core Collection (WoSCC) database and performed graph analyses with VOSviewer and OriginPro 2018. Included was a total of 2022 papers, involving 13234 researchers from 2105 institutions in 75 countries. The publication status and characteristics of countries, institutions, authors, and co-occurrence keywords were conducted by bibliometric analysis. The leaders in this field were the United States and Sweden, while China and India were the largest contributors among developing countries. SRT and single-cell sequencing are closely combined. The development of SRT itself, tumor-relevant research, and brain science, are the research hotspots of the present and foreseeable future. The development of bioinformatics facilitates the analytical applications of SRT. SRT and temporal dynamics should be closely combined. Future development in SRT is not only aimed at achieving high throughput and high resolution, but also dedicated to making it cost-effective, simple, rapid, and easy to use. Spatially resolved transcriptomics should be promoted from scientific research to clinical application as soon as possible in order to provide accurate diagnoses and individualized treatment for patients.


  • loading
  • [1]
    Marx V. Method of the year: spatially resolved transcriptomics[J]. Nat Methods, 2021, 18(1): 9−14. doi: 10.1038/s41592-020-01033-y
    Chen Y, Qian W, Lin L, et al. Mapping gene expression in the spatial dimension[J]. Small Methods, 2021, 5(11): e2100722. doi: 10.1002/smtd.202100722
    Dries R, Chen J, Del Rossi N, et al. Advances in spatial transcriptomic data analysis[J]. Genome Res, 2021, 31(10): 1706−1718. doi: 10.1101/gr.275224.121
    Zhuang X. Spatially resolved single-cell genomics and transcriptomics by imaging[J]. Nat Methods, 2021, 18(1): 18−22. doi: 10.1038/s41592-020-01037-8
    He Y, Tang X, Huang J, et al. ClusterMap for multi-scale clustering analysis of spatial gene expression[J]. Nat Commun, 2021, 12(1): 5909. doi: 10.1038/s41467-021-26044-x
    Maniatis S, Petrescu J, Phatnani H. Spatially resolved transcriptomics and its applications in cancer[J]. Curr Opin Genet Dev, 2021, 66: 70−77. doi: 10.1016/j.gde.2020.12.002
    Longo SK, Guo MG, Ji AL, et al. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics[J]. Nat Rev Genet, 2021, 22(10): 627−644. doi: 10.1038/s41576-021-00370-8
    Chen Y, Cheng L, Lian R, et al. COVID-19 vaccine research focusses on safety, efficacy, immunoinformatics, and vaccine production and delivery: a bibliometric analysis based on VOSviewer[J]. Biosci Trends, 2021, 15(2): 64−73. doi: 10.5582/bst.2021.01061
    Yu Y, Li Y, Zhang Z, et al. A bibliometric analysis using VOSviewer of publications on COVID-19[J]. Ann Transl Med, 2020, 8(13): 816. doi: 10.21037/atm-20-4235
    Liao H, Tang M, Luo L, et al. A bibliometric analysis and visualization of medical big data research[J]. Sustainability, 2018, 10(2): 166. doi: 10.3390/su10010166
    Guo YM, Huang ZL, Guo J, et al. Bibliometric analysis on smart cities research[J]. Sustainability, 2019, 11(13): 3606. doi: 10.3390/su11133606
    Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523−538. doi: 10.1007/s11192-009-0146-3
    Hosseini MR, Martek I, Zavadskas EK, et al. Critical evaluation of off-site construction research: a scientometric analysis[J]. Automation in Construction, 2018, 87: 235−247. doi: 10.1016/j.autcon.2017.12.002
    Pesta B, Fuerst J, Kirkegaard EOW. Bibliometric keyword analysis across seventeen years (2000–2016) of intelligence articles[J]. J Intell, 2018, 6(4): 46. doi: 10.3390/jintelligence6040046
    Xiang C, Wang Y, Liu H. A scientometrics review on nonpoint source pollution research[J]. Ecological Engineering, 2017, 99: 400−408. doi: 10.1016/j.ecoleng.2016.11.028
    Larsson L, Frisén J, Lundeberg J. Spatially resolved transcriptomics adds a new dimension to genomics[J]. Nat Methods, 2021, 18(1): 15−18. doi: 10.1038/s41592-020-01038-7
    Smit MM, Feller KJ, You L, et al. Spatially annotated single cell sequencing for unraveling intratumor heterogeneity[J]. Front Bioeng Biotechnol, 2022, 10: 829509. doi: 10.3389/fbioe.2022.829509
    Vickovic S, Schapiro D, Carlberg K, et al. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium[J]. Commun Biol, 2022, 5(1): 129. doi: 10.1038/s42003-022-03050-3
    Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, et al. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell[J]. Cell Rep, 2022, 38(12): 110547. doi: 10.1016/j.celrep.2022.110547
    Wang IH, Murray E, Andrews G, et al. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing[J]. Nat Neurosci, 2022, 25(4): 484−492. doi: 10.1038/s41593-022-01030-8
    Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes-next generation tools for tissue exploration[J]. BioEssays, 2020, 42(10): e1900221. doi: 10.1002/bies.201900221
    Andersson A, Larsson L, Stenbeck L, et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions[J]. Nat Commun, 2021, 12(1): 6012. doi: 10.1038/s41467-021-26271-2
    Hu KH, Eichorst JP, McGinnis CS, et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes[J]. Nat Methods, 2020, 17(8): 833−843. doi: 10.1038/s41592-020-0880-2
    Lin S, Liu Y, Zhang M, et al. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics[J]. Lab Chip, 2021, 21(20): 3829−3849. doi: 10.1039/d1lc00607j
    Maynard KR, Collado-Torres L, Weber LM, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex[J]. Nat Neurosci, 2021, 24(3): 425−436. doi: 10.1038/s41593-020-00787-0
    Schede HH, Schneider CG, Stergiadou J, et al. Spatial tissue profiling by imaging-free molecular tomography[J]. Nat Biotechnol, 2021, 39(8): 968−977. doi: 10.1038/s41587-021-00879-7
    Arora A, Goering R, Velez PT, et al. Visualization and quantification of subcellular RNA localization using single-molecule RNA fluorescence in situ hybridization[J]. Methods Mol Biol, 2022, 2404: 247−266. doi: 10.1007/978-1-0716-1851-6_13
    Chen KH, Boettiger AN, Moffitt JR, et al. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 2015, 348(6233): aaa6090. doi: 10.1126/science.aaa6090
    Xia C, Fan J, Emanuel G, et al. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression[J]. Proc Natl Acad Sci U S A, 2019, 116(39): 19490−19499. doi: 10.1073/pnas.1912459116
    Eng CL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH[J]. Nature, 2019, 568(7751): 235−239. doi: 10.1038/s41586-019-1049-y
    Lubeck E, Coskun AF, Zhiyentayev T, et al. Single-cell in situ RNA profiling by sequential hybridization[J]. Nat Methods, 2014, 11(4): 360−361. doi: 10.1038/nmeth.2892
    Shah S, Lubeck E, Zhou W, et al. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus[J]. Neuron, 2017, 94(4): 752−758.e1. doi: 10.1016/j.neuron.2017.05.008
    Shah S, Takei Y, Zhou W, et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH[J]. Cell, 2018, 174(2): 363−376.e16. doi: 10.1016/j.cell.2018.05.035
    Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization[J]. Nat Cell Biol, 2020, 22(1): 38−48. doi: 10.1038/s41556-019-0439-6
    Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363(6434): 1463−1467. doi: 10.1126/science.aaw1219
    Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution[J]. Cell, 2021, 184(3): 810−826.e23. doi: 10.1016/j.cell.2020.12.016
    He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast tumour morphology via deep learning[J]. Nat Biomed Eng, 2020, 4(8): 827−834. doi: 10.1038/s41551-020-0578-x
    Lv J, Shi Q, Han Y, et al. Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast[J]. Cell Death Dis, 2021, 12(12): 1095. doi: 10.1038/s41419-021-04380-6
    Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers[J]. Nat Genet, 2021, 53(9): 1334−1347. doi: 10.1038/s41588-021-00911-1
    Sundar R, Liu DH, Hutchins G G, et al. Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination[J]. Gut, 2021, 70(10): 1823−1832. doi: 10.1136/gutjnl-2020-320805
    Melo CM, Vidotto T, Chaves LP, et al. The role of somatic mutations on the immune response of the tumor microenvironment in prostate cancer[J]. Int J Mol Sci, 2021, 22(17): 9950. doi: 10.3390/ijms22179550
    Wang Y, Ma S, Ruzzo WL. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities[J]. Sci Rep, 2020, 10(1): 3490. doi: 10.1038/s41598-020-60384-w
    Sinjab A, Han G, Treekitkarnmongkol W, et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing[J]. Cancer Discov, 2021, 11(10): 2506−2523. doi: 10.1158/2159-8290.CD-20-1285
    Moncada R, Barkley D, Wagner F, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J]. Nat Biotechnol, 2020, 38(3): 333−342. doi: 10.1038/s41587-019-0392-8
    Zhao N, Zhang Y, Cheng R, et al. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival[J]. Cancer Cell International, 2022, 22(1): 57. doi: 10.1186/s12935-021-02430-9
    Kim AR, Choi SJ, Park J, et al. Spatial immune heterogeneity of hypoxia-induced exhausted features in high-grade glioma[J]. Oncoimmunology, 2022, 11(1): 2026019. doi: 10.1080/2162402X.2022.2026019
    Stur E, Corvigno S, Xu M, et al. Spatially resolved transcriptomics of high-grade serous ovarian carcinoma[J]. iScience, 2022, 25(3): 103923. doi: 10.1016/j.isci.2022.103923
    Jiang J, Mei J, Yi S, et al. Tumor associated macrophage and microbe: the potential targets of tumor vaccine delivery[J]. Adv Drug Deliv Rev, 2021, 180: 114046. doi: 10.1016/j.addr.2021.114046
    Zhu L, Jiang M, Wang H, et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy[J]. Ann Transl Med, 2021, 9(16): 1351. doi: 10.21037/atm-21-1948
    Ahmed R, Zaman T, Chowdhury F, et al. Single-cell RNA sequencing with spatial transcriptomics of cancer tissues[J]. Int J Mol Sci, 2022, 23(6): 3042. doi: 10.3390/ijms23063042
    Zhou X, Lu Y, Zhao F, et al. Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development[J]. Cell Stem Cell, 2022, 29(2): 328−343.e5. doi: 10.1016/j.stem.2021.11.009
    Langseth CM, Gyllborg D, Miller JA, et al. Comprehensive in situ mapping of human cortical transcriptomic cell types[J]. Commun Biol, 2021, 4(1): 998. doi: 10.1038/s42003-021-02517-z
    Sadick JS, O'Dea MR, Hasel P, et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease[J]. Neuron, 2022, 110(11): 1788−1805.e10. doi: 10.1016/j.neuron.2022.03.008
    Booeshaghi AS, Yao Z, van Velthoven C, et al. Isoform cell-type specificity in the mouse primary motor cortex[J]. Nature, 2021, 598(7879): 195−199. doi: 10.1038/s41586-021-03969-3
    Zhang M, Eichhorn SW, Zingg B, et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH[J]. Nature, 2021, 598(7879): 137−143. doi: 10.1038/s41586-021-03705-x
    Joglekar A, Prjibelski A, Mahfouz A, et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain[J]. Nat Commun, 2021, 12(1): 463. doi: 10.1038/s41467-020-20343-5
    Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes[J]. Nat Methods, 2018, 15(5): 343−346. doi: 10.1038/nmeth.4636
    Fernández Navarro J, Lundeberg J, Ståhl P L. ST viewer: a tool for analysis and visualization of spatial transcriptomics datasets[J]. Bioinformatics, 2019, 35(6): 1058−1060. doi: 10.1093/bioinformatics/bty714
    Teng H, Yuan Y, Bar-Joseph Z. Clustering spatial transcriptomics data[J]. Bioinformatics, 2022, 38(4): 997−1004. doi: 10.1093/bioinformatics/btab704
    Anderson A, Lundeberg J. sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling[J]. Bioinformatics, 2021, 37(17): 2644−2650. doi: 10.1093/bioinformatics/btab164
    Tiesmeyer S, Sahay S, Müller-Bötticher N, et al. SSAM-lite: a light-weight web app for rapid analysis of spatially resolved transcriptomics data[J]. Front Genet, 2022, 13: 785877. doi: 10.3389/fgene.2022.785877
    Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart[J]. Cell, 2019, 179(7): 1647−1660.e19. doi: 10.1016/j.cell.2019.11.025
    Mahdessian D, Cesnik AJ, Gnann C, et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics[J]. Nature, 2021, 590(7847): 649−654. doi: 10.1038/s41586-021-03232-9
    Stewart B J, Ferdinand J R, Young M D, et al. Spatiotemporal immune zonation of the human kidney[J]. Science, 2019, 365(6460): 1461−1466. doi: 10.1126/science.aat5031
    Ke L, Lu C, Shen R, et al. Knowledge mapping of drug-induced liver injury: a scientometric investigation (2010–2019)[J]. Front Pharmacol, 2020, 11: 842. doi: 10.3389/fphar.2020.00842
    Tian H, Liu H, Zhu Y, et al. The trends of single-cell analysis: a global study[J]. Biomed Res Int, 2020, 2020: 7425397. doi: 10.1155/2020/7425397
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (276) PDF downloads(19) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint