Citation: | Dezhi Huang, Yang Gou, Xiaoqi Wang, Qiong Li, Xinlei Li, Naya Ma, Yishuo Duan, Jun Rao, Xi Zhang. A bibliometric analysis and visualization of spatially resolved transcriptomics[J]. Blood&Genomics, 2023, 7(1): 22-33. doi: 10.46701/BG.2023012023006 |
[1] |
Marx V. Method of the year: spatially resolved transcriptomics[J]. Nat Methods, 2021, 18(1): 9−14. doi: 10.1038/s41592-020-01033-y
|
[2] |
Chen Y, Qian W, Lin L, et al. Mapping gene expression in the spatial dimension[J]. Small Methods, 2021, 5(11): e2100722. doi: 10.1002/smtd.202100722
|
[3] |
Dries R, Chen J, Del Rossi N, et al. Advances in spatial transcriptomic data analysis[J]. Genome Res, 2021, 31(10): 1706−1718. doi: 10.1101/gr.275224.121
|
[4] |
Zhuang X. Spatially resolved single-cell genomics and transcriptomics by imaging[J]. Nat Methods, 2021, 18(1): 18−22. doi: 10.1038/s41592-020-01037-8
|
[5] |
He Y, Tang X, Huang J, et al. ClusterMap for multi-scale clustering analysis of spatial gene expression[J]. Nat Commun, 2021, 12(1): 5909. doi: 10.1038/s41467-021-26044-x
|
[6] |
Maniatis S, Petrescu J, Phatnani H. Spatially resolved transcriptomics and its applications in cancer[J]. Curr Opin Genet Dev, 2021, 66: 70−77. doi: 10.1016/j.gde.2020.12.002
|
[7] |
Longo SK, Guo MG, Ji AL, et al. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics[J]. Nat Rev Genet, 2021, 22(10): 627−644. doi: 10.1038/s41576-021-00370-8
|
[8] |
Chen Y, Cheng L, Lian R, et al. COVID-19 vaccine research focusses on safety, efficacy, immunoinformatics, and vaccine production and delivery: a bibliometric analysis based on VOSviewer[J]. Biosci Trends, 2021, 15(2): 64−73. doi: 10.5582/bst.2021.01061
|
[9] |
Yu Y, Li Y, Zhang Z, et al. A bibliometric analysis using VOSviewer of publications on COVID-19[J]. Ann Transl Med, 2020, 8(13): 816. doi: 10.21037/atm-20-4235
|
[10] |
Liao H, Tang M, Luo L, et al. A bibliometric analysis and visualization of medical big data research[J]. Sustainability, 2018, 10(2): 166. doi: 10.3390/su10010166
|
[11] |
Guo YM, Huang ZL, Guo J, et al. Bibliometric analysis on smart cities research[J]. Sustainability, 2019, 11(13): 3606. doi: 10.3390/su11133606
|
[12] |
Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523−538. doi: 10.1007/s11192-009-0146-3
|
[13] |
Hosseini MR, Martek I, Zavadskas EK, et al. Critical evaluation of off-site construction research: a scientometric analysis[J]. Automation in Construction, 2018, 87: 235−247. doi: 10.1016/j.autcon.2017.12.002
|
[14] |
Pesta B, Fuerst J, Kirkegaard EOW. Bibliometric keyword analysis across seventeen years (2000–2016) of intelligence articles[J]. J Intell, 2018, 6(4): 46. doi: 10.3390/jintelligence6040046
|
[15] |
Xiang C, Wang Y, Liu H. A scientometrics review on nonpoint source pollution research[J]. Ecological Engineering, 2017, 99: 400−408. doi: 10.1016/j.ecoleng.2016.11.028
|
[16] |
Larsson L, Frisén J, Lundeberg J. Spatially resolved transcriptomics adds a new dimension to genomics[J]. Nat Methods, 2021, 18(1): 15−18. doi: 10.1038/s41592-020-01038-7
|
[17] |
Smit MM, Feller KJ, You L, et al. Spatially annotated single cell sequencing for unraveling intratumor heterogeneity[J]. Front Bioeng Biotechnol, 2022, 10: 829509. doi: 10.3389/fbioe.2022.829509
|
[18] |
Vickovic S, Schapiro D, Carlberg K, et al. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium[J]. Commun Biol, 2022, 5(1): 129. doi: 10.1038/s42003-022-03050-3
|
[19] |
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, et al. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell[J]. Cell Rep, 2022, 38(12): 110547. doi: 10.1016/j.celrep.2022.110547
|
[20] |
Wang IH, Murray E, Andrews G, et al. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing[J]. Nat Neurosci, 2022, 25(4): 484−492. doi: 10.1038/s41593-022-01030-8
|
[21] |
Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes-next generation tools for tissue exploration[J]. BioEssays, 2020, 42(10): e1900221. doi: 10.1002/bies.201900221
|
[22] |
Andersson A, Larsson L, Stenbeck L, et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions[J]. Nat Commun, 2021, 12(1): 6012. doi: 10.1038/s41467-021-26271-2
|
[23] |
Hu KH, Eichorst JP, McGinnis CS, et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes[J]. Nat Methods, 2020, 17(8): 833−843. doi: 10.1038/s41592-020-0880-2
|
[24] |
Lin S, Liu Y, Zhang M, et al. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics[J]. Lab Chip, 2021, 21(20): 3829−3849. doi: 10.1039/d1lc00607j
|
[25] |
Maynard KR, Collado-Torres L, Weber LM, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex[J]. Nat Neurosci, 2021, 24(3): 425−436. doi: 10.1038/s41593-020-00787-0
|
[26] |
Schede HH, Schneider CG, Stergiadou J, et al. Spatial tissue profiling by imaging-free molecular tomography[J]. Nat Biotechnol, 2021, 39(8): 968−977. doi: 10.1038/s41587-021-00879-7
|
[27] |
Arora A, Goering R, Velez PT, et al. Visualization and quantification of subcellular RNA localization using single-molecule RNA fluorescence in situ hybridization[J]. Methods Mol Biol, 2022, 2404: 247−266. doi: 10.1007/978-1-0716-1851-6_13
|
[28] |
Chen KH, Boettiger AN, Moffitt JR, et al. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 2015, 348(6233): aaa6090. doi: 10.1126/science.aaa6090
|
[29] |
Xia C, Fan J, Emanuel G, et al. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression[J]. Proc Natl Acad Sci U S A, 2019, 116(39): 19490−19499. doi: 10.1073/pnas.1912459116
|
[30] |
Eng CL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH[J]. Nature, 2019, 568(7751): 235−239. doi: 10.1038/s41586-019-1049-y
|
[31] |
Lubeck E, Coskun AF, Zhiyentayev T, et al. Single-cell in situ RNA profiling by sequential hybridization[J]. Nat Methods, 2014, 11(4): 360−361. doi: 10.1038/nmeth.2892
|
[32] |
Shah S, Lubeck E, Zhou W, et al. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus[J]. Neuron, 2017, 94(4): 752−758.e1. doi: 10.1016/j.neuron.2017.05.008
|
[33] |
Shah S, Takei Y, Zhou W, et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH[J]. Cell, 2018, 174(2): 363−376.e16. doi: 10.1016/j.cell.2018.05.035
|
[34] |
Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization[J]. Nat Cell Biol, 2020, 22(1): 38−48. doi: 10.1038/s41556-019-0439-6
|
[35] |
Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363(6434): 1463−1467. doi: 10.1126/science.aaw1219
|
[36] |
10x Genomics. Visium Spatial Transcriptomics [EB/OL]. https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_LIT059_RevC_ProductSheet_VisiumSpatialGeneExpression_Letter_digital.pdf.
|
[37] |
Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution[J]. Cell, 2021, 184(3): 810−826.e23. doi: 10.1016/j.cell.2020.12.016
|
[38] |
He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast tumour morphology via deep learning[J]. Nat Biomed Eng, 2020, 4(8): 827−834. doi: 10.1038/s41551-020-0578-x
|
[39] |
Lv J, Shi Q, Han Y, et al. Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast[J]. Cell Death Dis, 2021, 12(12): 1095. doi: 10.1038/s41419-021-04380-6
|
[40] |
Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers[J]. Nat Genet, 2021, 53(9): 1334−1347. doi: 10.1038/s41588-021-00911-1
|
[41] |
Sundar R, Liu DH, Hutchins G G, et al. Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination[J]. Gut, 2021, 70(10): 1823−1832. doi: 10.1136/gutjnl-2020-320805
|
[42] |
Melo CM, Vidotto T, Chaves LP, et al. The role of somatic mutations on the immune response of the tumor microenvironment in prostate cancer[J]. Int J Mol Sci, 2021, 22(17): 9950. doi: 10.3390/ijms22179550
|
[43] |
Wang Y, Ma S, Ruzzo WL. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities[J]. Sci Rep, 2020, 10(1): 3490. doi: 10.1038/s41598-020-60384-w
|
[44] |
Sinjab A, Han G, Treekitkarnmongkol W, et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing[J]. Cancer Discov, 2021, 11(10): 2506−2523. doi: 10.1158/2159-8290.CD-20-1285
|
[45] |
Moncada R, Barkley D, Wagner F, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J]. Nat Biotechnol, 2020, 38(3): 333−342. doi: 10.1038/s41587-019-0392-8
|
[46] |
Zhao N, Zhang Y, Cheng R, et al. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival[J]. Cancer Cell International, 2022, 22(1): 57. doi: 10.1186/s12935-021-02430-9
|
[47] |
Kim AR, Choi SJ, Park J, et al. Spatial immune heterogeneity of hypoxia-induced exhausted features in high-grade glioma[J]. Oncoimmunology, 2022, 11(1): 2026019. doi: 10.1080/2162402X.2022.2026019
|
[48] |
Stur E, Corvigno S, Xu M, et al. Spatially resolved transcriptomics of high-grade serous ovarian carcinoma[J]. iScience, 2022, 25(3): 103923. doi: 10.1016/j.isci.2022.103923
|
[49] |
Jiang J, Mei J, Yi S, et al. Tumor associated macrophage and microbe: the potential targets of tumor vaccine delivery[J]. Adv Drug Deliv Rev, 2021, 180: 114046. doi: 10.1016/j.addr.2021.114046
|
[50] |
Zhu L, Jiang M, Wang H, et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy[J]. Ann Transl Med, 2021, 9(16): 1351. doi: 10.21037/atm-21-1948
|
[51] |
Ahmed R, Zaman T, Chowdhury F, et al. Single-cell RNA sequencing with spatial transcriptomics of cancer tissues[J]. Int J Mol Sci, 2022, 23(6): 3042. doi: 10.3390/ijms23063042
|
[52] |
Zhou X, Lu Y, Zhao F, et al. Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development[J]. Cell Stem Cell, 2022, 29(2): 328−343.e5. doi: 10.1016/j.stem.2021.11.009
|
[53] |
Langseth CM, Gyllborg D, Miller JA, et al. Comprehensive in situ mapping of human cortical transcriptomic cell types[J]. Commun Biol, 2021, 4(1): 998. doi: 10.1038/s42003-021-02517-z
|
[54] |
Sadick JS, O'Dea MR, Hasel P, et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease[J]. Neuron, 2022, 110(11): 1788−1805.e10. doi: 10.1016/j.neuron.2022.03.008
|
[55] |
Booeshaghi AS, Yao Z, van Velthoven C, et al. Isoform cell-type specificity in the mouse primary motor cortex[J]. Nature, 2021, 598(7879): 195−199. doi: 10.1038/s41586-021-03969-3
|
[56] |
Zhang M, Eichhorn SW, Zingg B, et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH[J]. Nature, 2021, 598(7879): 137−143. doi: 10.1038/s41586-021-03705-x
|
[57] |
Joglekar A, Prjibelski A, Mahfouz A, et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain[J]. Nat Commun, 2021, 12(1): 463. doi: 10.1038/s41467-020-20343-5
|
[58] |
Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes[J]. Nat Methods, 2018, 15(5): 343−346. doi: 10.1038/nmeth.4636
|
[59] |
Fernández Navarro J, Lundeberg J, Ståhl P L. ST viewer: a tool for analysis and visualization of spatial transcriptomics datasets[J]. Bioinformatics, 2019, 35(6): 1058−1060. doi: 10.1093/bioinformatics/bty714
|
[60] |
Teng H, Yuan Y, Bar-Joseph Z. Clustering spatial transcriptomics data[J]. Bioinformatics, 2022, 38(4): 997−1004. doi: 10.1093/bioinformatics/btab704
|
[61] |
Anderson A, Lundeberg J. sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling[J]. Bioinformatics, 2021, 37(17): 2644−2650. doi: 10.1093/bioinformatics/btab164
|
[62] |
Tiesmeyer S, Sahay S, Müller-Bötticher N, et al. SSAM-lite: a light-weight web app for rapid analysis of spatially resolved transcriptomics data[J]. Front Genet, 2022, 13: 785877. doi: 10.3389/fgene.2022.785877
|
[63] |
Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart[J]. Cell, 2019, 179(7): 1647−1660.e19. doi: 10.1016/j.cell.2019.11.025
|
[64] |
Mahdessian D, Cesnik AJ, Gnann C, et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics[J]. Nature, 2021, 590(7847): 649−654. doi: 10.1038/s41586-021-03232-9
|
[65] |
Stewart B J, Ferdinand J R, Young M D, et al. Spatiotemporal immune zonation of the human kidney[J]. Science, 2019, 365(6460): 1461−1466. doi: 10.1126/science.aat5031
|
[66] |
Ke L, Lu C, Shen R, et al. Knowledge mapping of drug-induced liver injury: a scientometric investigation (2010–2019)[J]. Front Pharmacol, 2020, 11: 842. doi: 10.3389/fphar.2020.00842
|
[67] |
Tian H, Liu H, Zhu Y, et al. The trends of single-cell analysis: a global study[J]. Biomed Res Int, 2020, 2020: 7425397. doi: 10.1155/2020/7425397
|