Citation: | Juan Xie, Yun Yao, Chen Yang, Wei Liu, Xiaoyu Zhou, Mingshun Zhang. Erythrocyte immune system: beyond the gas transporter[J]. Blood&Genomics, 2022, 6(1): 1-11. doi: 10.46701/BG.2022012022009 |
[1] |
Wicinski M, Liczner G, Cadelski K, et al. Anemia of chronic diseases: wider diagnostics-better treatment?[J]. Nutrients, 2020, 12(6): 1784. doi: 10.3390/nu12061784
|
[2] |
Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals[J]. Front Physiol, 2017, 8: 1076. doi: 10.3389/fphys.2017.01076
|
[3] |
Anderson HL, Brodsky IE, Mangalmurti NS. The evolving erythrocyte: red blood cells as modulators of innate immunity[J]. J Immunol, 2018, 201(5): 1343−1351. doi: 10.4049/jimmunol.1800565
|
[4] |
Tian XY, Tian J, Tang XY, et al. Long non-coding RNAs in the regulation of myeloid cells[J]. J Hematol Oncol, 2016, 9(1): 99. doi: 10.1186/s13045-016-0333-7
|
[5] |
Leslie M. Red blood cells may be immune sentinels[J]. Science, 2021, 374(6566): 383. doi: 10.1126/science.acx9389
|
[6] |
Siegel I, Liu TL, Gleicher N. The red-cell immune system[J]. Lancet, 1981, 2(8246): 556−559. doi: 10.1016/s0140-6736(81)90941-7
|
[7] |
Mendonça R, Silveira AA, Conran N. Red cell DAMPs and inflammation[J]. Inflamm Res, 2016, 65(9): 665−678. doi: 10.1007/s00011-016-0955-9
|
[8] |
Swann OV, Harrison EM, Opi DH, et al. No evidence that knops blood group polymorphisms affect complement receptor 1 clustering on erythrocytes[J]. Sci Rep, 2017, 7(1): 17825. doi: 10.1038/s41598-017-17664-9
|
[9] |
Fearon DT. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte[J]. J Exp Med, 1980, 152(1): 20−30. doi: 10.1084/jem.152.1.20
|
[10] |
Sandri TL, Lidani KCF, Andrade FA, et al. Human complement receptor type 1 (CR1) protein levels and genetic variants in chronic Chagas Disease[J]. Sci Rep, 2018, 8(1): 526. doi: 10.1038/s41598-017-18937-z
|
[11] |
Page MJ, Bester J, Pretorius E. The inflammatory effects of TNF-alpha and complement component 3 on coagulation[J]. Sci Rep, 2018, 8(1): 1812. doi: 10.1038/s41598-018-20220-8
|
[12] |
Qi XM, Ma JF. The role of amyloid beta clearance in cerebral amyloid angiopathy: more potential therapeutic targets[J]. Transl Neurodegener, 2017, 6: 22. doi: 10.1186/s40035-017-0091-7
|
[13] |
Birmingham DJ, Gavit KF, McCarty SM, et al. Consumption of erythrocyte CR1 (CD35) is associated with protection against systemic lupus erythematosus renal flare[J]. Clin Exp Immunol, 2006, 143(2): 274−280. doi: 10.1111/j.1365-2249.2005.02983.x
|
[14] |
Brancucci NM, Witmer K, Schmid C, et al. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum[J]. PLoS One, 2014, 9(6): e100183. doi: 10.1371/journal.pone.0100183
|
[15] |
Batinovic S, McHugh E, Chisholm SA, et al. An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes[J]. Nat Commun, 2017, 8: 16044. doi: 10.1038/ncomms16044
|
[16] |
Mensah-Brown HE, Amoako N, Abugri J, et al. Analysis of erythrocyte invasion mechanisms of plasmodium falciparum clinical isolates across 3 malaria-endemic areas in Ghana[J]. J Infect Dis, 2015, 212(8): 1288−1297. doi: 10.1093/infdis/jiv207
|
[17] |
King C, Du P, Otieno W, et al. Use of mosquito preventive measures is associated with increased RBC CR1 levels in a malaria holoendemic area of western Kenya[J]. Am J Trop Med Hyg, 2015, 92(1): 34−38. doi: 10.4269/ajtmh.14-0342
|
[18] |
Lam LKM, Murphy S, Kokkinaki D, et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia[J]. Sci Transl Med, 2021, 13(616): eabj1008. doi: 10.1126/scitranslmed.abj1008
|
[19] |
Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease[J]. Nat Med, 2016, 22(2): 146−153. doi: 10.1038/nm.4027
|
[20] |
Hotz MJ, Qing D, Shashaty MGS, et al. Red blood cells homeostatically bind mitochondrial DNA through TLR9 to maintain quiescence and to prevent lung injury[J]. Am J Respir Crit Care Med, 2018, 197(4): 470−480. doi: 10.1164/rccm.201706-1161OC
|
[21] |
Bajwa E, Pointer CB, Klegeris A. The role of mitochondrial damage-associated molecular patterns in chronic neuroinflammation[J]. Mediators Inflamm, 2019, 2019: 4050796. doi: 10.1155/2019/4050796
|
[22] |
Bordt EA, Shook LL, Atyeo C, et al. Maternal SARS-CoV-2 infection elicits sexually dimorphic placental immune responses[J]. Sci Transl Med, 2021, 13(617): eabi7428. doi: 10.1126/scitranslmed.abi7428
|
[23] |
Kazama R, Miyoshi H, Takeuchi M, et al. Combination of CD47 and signal-regulatory protein-alpha constituting the "don't eat me signal" is a prognostic factor in diffuse large B-cell lymphoma[J]. Cancer Sci, 2020, 111(7): 2608−2619. doi: 10.1111/cas.14437
|
[24] |
Gheibihayat SM, Cabezas R, Nikiforov NG, et al. CD47 in the brain and neurodegeneration: an update on the role in neuroinflammatory pathways[J]. Molecules, 2021, 26(13): 3943. doi: 10.3390/molecules26133943
|
[25] |
Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells[J]. Science, 2000, 288(5473): 2051−2054. doi: 10.1126/science.288.5473.2051
|
[26] |
Nagaoka H, Sasaoka C, Yuguchi T, et al. PfMSA180 is a novel Plasmodium falciparum vaccine antigen that interacts with human erythrocyte integrin associated protein (CD47)[J]. Sci Rep, 2019, 9(1): 5923. doi: 10.1038/s41598-019-42366-9
|
[27] |
Della Pelle G, Delgado López A, Salord Fiol M, et al. Cyanine dyes for photo-thermal therapy: a comparison of synthetic liposomes and natural erythrocyte-based carriers[J]. Int J Mol Sci, 2021, 22(13): 6914. doi: 10.3390/ijms22136914
|
[28] |
Zhang KL, Wang YJ, Sun J, et al. Artificial chimeric exosomes for anti-phagocytosis and targeted cancer therapy[J]. Chem Sci, 2019, 10(5): 1555−1561. doi: 10.1039/c8sc03224f
|
[29] |
Navarathna DH, Stein EV, Lessey-Morillon EC, et al. CD47 promotes protective innate and adaptive immunity in a mouse model of disseminated candidiasis[J]. PLoS One, 2015, 10(5): e0128220. doi: 10.1371/journal.pone.0128220
|
[30] |
Myers DR, Abram CL, Wildes D, et al. Shp1 loss enhances macrophage effector function and promotes anti-tumor immunity[J]. Front Immunol, 2020, 11: 576310. doi: 10.3389/fimmu.2020.576310
|
[31] |
Hendriks MAJM, Ploeg EM, Koopmans I, et al. Bispecific antibody approach for EGFR-directed blockade of the CD47-SIRPalpha "don't eat me" immune checkpoint promotes neutrophil-mediated trogoptosis and enhances antigen cross-presentation[J]. Oncoimmunology, 2020, 9(1): 1824323. doi: 10.1080/2162402X.2020.1824323
|
[32] |
Tal MC, Torrez Dulgeroff LB, Myers L, et al. Upregulation of CD47 is a host checkpoint response to pathogen recognition[J]. mBio, 2020, 11(3): e01293−20. doi: 10.1128/mBio.01293-20
|
[33] |
Hayes BH, Tsai RK, Dooling LJ, et al. Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPalpha[J]. J Cell Sci, 2020, 133(5): jcs237800. doi: 10.1242/jcs.237800
|
[34] |
Murata Y, Kotani T, Ohnishi H, et al. The CD47-SIRPalpha signalling system: its physiological roles and therapeutic application[J]. J Biochem, 2014, 155(6): 335−344. doi: 10.1093/jb/mvu017
|
[35] |
Burger P, Hilarius-Stokman P, de Korte D, et al. CD47 functions as a molecular switch for erythrocyte phagocytosis[J]. Blood, 2012, 119(23): 5512−5521. doi: 10.1182/blood-2011-10-386805
|
[36] |
Meinderts SM, Oldenborg PA, Beuger BM, et al. Human and murine splenic neutrophils are potent phagocytes of IgG-opsonized red blood cells[J]. Blood Adv, 2017, 1(14): 875−886. doi: 10.1182/bloodadvances.2017004671
|
[37] |
Romero PJ, Hernández-Chinea C. The action of red cell calcium ions on human erythrophagocytosis in vitro[J]. Front Physiol, 2017, 8: 1008. doi: 10.3389/fphys.2017.01008
|
[38] |
Hillary RF, Trejo-Banos D, Kousathanas A, et al. Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults[J]. Genome Med, 2020, 12(1): 60. doi: 10.1186/s13073-020-00754-1
|
[39] |
Lee JS, Wurfel MM, Matute-Bello G, et al. The Duffy antigen modifies systemic and local tissue chemokine responses following lipopolysaccharide stimulation[J]. J Immunol, 2006, 177(11): 8086−8094. doi: 10.4049/jimmunol.177.11.8086
|
[40] |
Rincon MR, Oppenheimer K, Bonney EA. Selective accumulation of Th2-skewing immature erythroid cells in developing neonatal mouse spleen[J]. Int J Biol Sci, 2012, 8(5): 719−730. doi: 10.7150/ijbs.3764
|
[41] |
Sennikov SV, Injelevskaya TV, Krysov SV, et al. Production of hemo- and immunoregulatory cytokines by erythroblast antigen+ and glycophorin A+ cells from human bone marrow[J]. BMC Cell Biol, 2004, 5(1): 39. doi: 10.1186/1471-2121-5-39
|
[42] |
Wei J, Zhao J, Schrott V, et al. Red blood cells store and release interleukin-33[J]. J Investig Med, 2015, 63(6): 806−810. doi: 10.1097/JIM.0000000000000213
|
[43] |
Bao GQ, Ju AZ. Signal pathways of eryptosis-review[J]. J Exp Hematol (in Chinese), 2009, 17(4): 1097–1100.https://pubmed.ncbi.nlm.nih.gov/19698269/
|
[44] |
Föller M, Huber SM, Lang F. Erythrocyte programmed cell death[J]. IUBMB Life, 2008, 60(10): 661−668. doi: 10.1002/iub.106
|
[45] |
Klarl BA, Lang PA, Kempe DS, et al. Protein kinase C mediates erythrocyte "programmed cell death" following glucose depletion[J]. Am J Physiol Cell Physiol, 2006, 290(1): C244−53. doi: 10.1152/ajpcell.00283.2005
|
[46] |
Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis[J]. Transfus Med Hemother, 2012, 39(5): 308−314. doi: 10.1159/000342534
|
[47] |
Antonelou MH, Kriebardis AG, Papassideri IS. Aging and death signalling in mature red cells: from basic science to transfusion practice[J]. Blood Transfus, 2010, Suppl 3(Suppl 3): s39−47. doi: 10.2450/2010.007S
|
[48] |
Huang YX, Wu ZJ, Mehrishi J, et al. Human red blood cell aging: correlative changes in surface charge and cell properties[J]. J Cell Mol Med, 2011, 15(12): 2634−2642. doi: 10.1111/j.1582-4934.2011.01310.x
|
[49] |
Jeney V. Pro-inflammatory actions of red blood cell-derived DAMPs[J]. Exp Suppl, 2018, 108: 211−233. doi: 10.1007/978-3-319-89390-7_9
|
[50] |
Whitman JC, Paw BH, Chung J. The role of ClpX in erythropoietic protoporphyria[J]. Hematol Transfus Cell Ther, 2018, 40(2): 182−188. doi: 10.1016/j.htct.2018.03.001
|
[51] |
Fujiwara T, Harigae H. Biology of heme in mammalian erythroid cells and related disorders[J]. Biomed Res Int, 2015, 2015: 278536. doi: 10.1155/2015/278536
|
[52] |
Xu HH, Jiang ZH, Sun YT, et al. Differences in the hemolytic behavior of two isomers in ophiopogon japonicus in vitro and in vivo and their risk warnings[J]. Oxid Med Cell Longev, 2020, 2020: 8870656. doi: 10.1155/2020/8870656
|
[53] |
Schaer DJ, Buehler PW, Alayash AI, et al. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins[J]. Blood, 2013, 121(8): 1276−1284. doi: 10.1182/blood-2012-11-451229
|
[54] |
Dutra FF, Alves LS, Rodrigues D, et al. Hemolysis-induced lethality involves inflammasome activation by heme[J]. Proc Natl Acad Sci U S A, 2014, 111(39): E4110−8. doi: 10.1073/pnas.1405023111
|
[55] |
Canesin G, Hejazi SM, Swanson KD, et al. Heme-derived metabolic signals dictate immune responses[J]. Front Immunol, 2020, 11: 66. doi: 10.3389/fimmu.2020.00066
|
[56] |
Fortes GB, Alves LS, de Oliveira R, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production[J]. Blood, 2012, 119(10): 2368−2675. doi: 10.1182/blood-2011-08-375303
|
[57] |
Belcher JD, Chen C, Nguyen J, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease[J]. Blood, 2014, 123(3): 377−390. doi: 10.1182/blood-2013-04-495887
|
[58] |
Wegiel B, Hauser CJ, Otterbein LE. Heme as a danger molecule in pathogen recognition[J]. Free Radic Biol Med, 2015, 89: 651−661. doi: 10.1016/j.freeradbiomed.2015.08.020
|
[59] |
Ghosh S, Adisa OA, Chappa P, et al. Extracellular hemin crisis triggers acute chest syndrome in sickle mice[J]. J Clin Invest, 2013, 123(11): 4809−4820. doi: 10.1172/JCI64578
|
[60] |
Bozza MT, Jeney V. Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs[J]. Front Immunol, 2020, 11: 1323. doi: 10.3389/fimmu.2020.01323
|
[61] |
Frimat M, Boudhabhay I, Roumenina LT. Hemolysis derived products toxicity and endothelium: model of the second hit[J]. Toxins (Basel), 2019, 11(11): 660. doi: 10.3390/toxins11110660
|
[62] |
Simões RL, Arruda MA, Canetti C, et al. Proinflammatory responses of heme in alveolar macrophages: repercussion in lung hemorrhagic episodes[J]. Mediators Inflamm, 2013, 2013: 946878. doi: 10.1155/2013/946878
|
[63] |
Mooney JP, Barry A, Goncalves BP, et al. Haemolysis and haem oxygenase-1 induction during persistent "asymptomatic" malaria infection in Burkinabe children[J]. Malar J, 2018, 17(1): 253. doi: 10.1186/s12936-018-2402-6
|
[64] |
Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease[J]. Nat Rev Immunol, 2016, 16(11): 676−689. doi: 10.1038/nri.2016.95
|
[65] |
Kearley J, Silver JS, Sanden C, et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection[J]. Immunity, 2015, 42(3): 566−579. doi: 10.1016/j.immuni.2015.02.011
|
[66] |
Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease[J]. Immunol Rev, 2017, 278(1): 173−184. doi: 10.1111/imr.12552
|
[67] |
McSorley HJ, Smyth DJ. IL-33: a central cytokine in helminth infections[J]. Semin Immunol, 2021, 53: 101532. doi: 10.1016/j.smim.2021.101532
|
[68] |
Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family[J]. Immunol Rev, 2018, 281(1): 154−168. doi: 10.1111/imr.12619
|
[69] |
Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy[J]. Curr Opin Immunol, 2014, 31: 31−37. doi: 10.1016/j.coi.2014.09.004
|
[70] |
Byers DE, Alexander-Brett J, Patel AC, et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease[J]. J Clin Invest, 2013, 123(9): 3967−3982. doi: 10.1172/JCI65570
|
[71] |
Tamagawa-Mineoka R, Okuzawa Y, Masuda K, et al. Increased serum levels of interleukin 33 in patients with atopic dermatitis[J]. J Am Acad Dermatol, 2014, 70(5): 882−888. doi: 10.1016/j.jaad.2014.01.867
|
[72] |
Raeiszadeh Jahromi S, Mahesh PA, Jayaraj BS, et al. Serum levels of IL-10, IL-17F and IL-33 in patients with asthma: a case-control study[J]. J Asthma, 2014, 51(10): 1004−13. doi: 10.3109/02770903.2014.938353
|
[73] |
Kasahara DI, Wilkinson JE, Cho Y, et al. The interleukin-33 receptor contributes to pulmonary responses to ozone in male mice: role of the microbiome[J]. Respir Res, 2019, 20(1): 197. doi: 10.1186/s12931-019-1168-x
|
[74] |
Nadafi R, Arens R. The curious case of IL-33 in homeostasis and infection[J]. Eur J Immunol, 2021, 51(1): 60−63. doi: 10.1002/eji.202049031
|
[75] |
Hoogerwerf JJ, Tanck MW, van Zoelen MA, et al. Soluble ST2 plasma concentrations predict mortality in severe sepsis[J]. Intensive Care Med, 2010, 36(4): 630−637. doi: 10.1007/s00134-010-1773-0
|
[76] |
Darbonne WC, Rice GC, Mohler MA, et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin[J]. J Clin Invest, 1991, 88(4): 1362−1369. doi: 10.1172/JCI115442
|
[77] |
Karsten E, Breen E, Herbert BR. Red blood cells are dynamic reservoirs of cytokines[J]. Sci Rep, 2018, 8(1): 3101. doi: 10.1038/s41598-018-21387-w
|
[78] |
Seeland S, Kettiger H, Murphy M, et al. ATP-induced cellular stress and mitochondrial toxicity in cells expressing purinergic P2X7 receptor[J]. Pharmacol Res Perspect, 2015, 3(2): e00123. doi: 10.1002/prp2.123
|
[79] |
Li Y, Zhou J, Burkovskiy I, et al. ATP in red blood cells as biomarker for sepsis in humans[J]. Med Hypotheses, 2019, 124: 84−86. doi: 10.1016/j.mehy.2019.02.014
|
[80] |
Kalan G, Derganc M, Primožič J. Phosphate metabolism in red blood cells of critically ill neonates[J]. Pflugers Arch, 2000, 440(5 Suppl): R109−11. doi: 10.1007/s004240000026
|
[81] |
Heming N, Salah A, Meng P, et al. Thiamine status and lactate concentration in sepsis: a prospective observational study[J]. Medicine (Baltimore), 2020, 99(7): e18894. doi: 10.1097/MD.0000000000018894
|
[82] |
Kirby BS, Crecelius AR, Voyles WF, et al. Impaired skeletal muscle blood flow control with advancing age in humans: attenuated ATP release and local vasodilation during erythrocyte deoxygenation[J]. Circ Res, 2012, 111(2): 220−230. doi: 10.1161/CIRCRESAHA.112.269571
|
[83] |
Yeung PK, Kolathuru SS, Mohammadizadeh S, et al. Adenosine 5'-triphosphate metabolism in red blood cells as a potential biomarker for post-exercise hypotension and a drug target for cardiovascular protection[J]. Metabolites, 2018, 8(2): 30. doi: 10.3390/metabo8020030
|
[84] |
Rocha M, Herance R, Rovira S, et al. Mitochondrial dysfunction and antioxidant therapy in sepsis[J]. Infect Disord Drug Targets, 2012, 12(2): 161−178. doi: 10.2174/187152612800100189
|
[85] |
Ferguson BS, Neidert LE, Rogatzki MJ, et al. Red blood cell ATP release correlates with red blood cell hemolysis[J]. Am J Physiol Cell Physiol, 2021, 321(5): C761−C769. doi: 10.1152/ajpcell.00510.2020
|
[86] |
Sikora J, Orlov SN, Furuya K, et al. Hemolysis is a primary ATP-release mechanism in human erythrocytes[J]. Blood, 2014, 124(13): 2150−2157. doi: 10.1182/blood-2014-05-572024
|
[87] |
Burnstock G. Purinergic signaling in the cardiovascular system[J]. Circ Res, 2017, 120(1): 207−228. doi: 10.1161/CIRCRESAHA.116.309726
|
[88] |
Song N, Ma J, Meng XW, et al. Heat shock protein 70 protects the heart from ischemia/reperfusion injury through inhibition of p38 MAPK signaling[J]. Oxid Med Cell Longev, 2020, 2020: 3908641. doi: 10.1155/2020/3908641
|
[89] |
Vacchina P, Norris-Mullins B, Carlson ES, et al. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani[J]. Parasit Vectors, 2016, 9(1): 621. doi: 10.1186/s13071-016-1904-8
|
[90] |
Igarashi Y, Ohnishi K, Irie K, et al. Possible contribution of zerumbone-induced proteo-stress to its anti-inflammatory functions via the activation of heat shock factor 1[J]. PLoS One, 2016, 11(8): e0161282. doi: 10.1371/journal.pone.0161282
|
[91] |
Gromov PS, Celis JE. Identification of two molecular chaperons (HSX70, HSC70) in mature human erythrocytes[J]. Exp Cell Res, 1991, 195(2): 556−559. doi: 10.1016/0014-4827(91)90412-n
|
[92] |
Bhattacharya D, Saha S, Basu S, et al. Differential regulation of redox proteins and chaperones in HbEbeta-thalassemia erythrocyte proteome[J]. Proteomics Clin Appl, 2010, 4(5): 480−488. doi: 10.1002/prca.200900073
|
[93] |
Adewoye AH, Klings ES, Farber HW, et al. Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70[J]. Am J Hematol, 2005, 78(3): 240−242. doi: 10.1002/ajh.20292
|
[94] |
Molvarec A, Derzsy Z, Kocsis J, et al. Circulating anti-heat-shock-protein antibodies in normal pregnancy and preeclampsia[J]. Cell Stress Chaperones, 2009, 14(5): 491−498. doi: 10.1007/s12192-009-0102-4
|