Volume 6 Issue 1
Jun.  2022
Turn off MathJax
Article Contents
Xinxia Chang, Yingjia Zhou, Yufei Wang, Wenwen Zhao, Xiao Zhang. Effects of two different nutrition supply methods on improving hybridoma cell production[J]. Blood&Genomics, 2022, 6(1): 63-68. doi: 10.46701/BG.2022012022007
Citation: Xinxia Chang, Yingjia Zhou, Yufei Wang, Wenwen Zhao, Xiao Zhang. Effects of two different nutrition supply methods on improving hybridoma cell production[J]. Blood&Genomics, 2022, 6(1): 63-68. doi: 10.46701/BG.2022012022007

Effects of two different nutrition supply methods on improving hybridoma cell production

doi: 10.46701/BG.2022012022007
More Information
  • Corresponding author: Xiao Zhang, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. E-mail: zhangxiao@njmu.edu.cn
  • Received Date: 2022-04-06
  • Rev Recd Date: 2022-06-02
  • Accepted Date: 2022-06-13
  • Available Online: 2022-07-08
  • Publish Date: 2022-06-30
  • Hybridoma cells are featured by the effective utilization of both B lymphocytes and immortalized myeloma cells, allowing for the continuous generation of monoclonal antibodies specific to antigens. With regard to conventional hybridoma technology, B lymphocytes must be fused with myeloma cells using various methods to generate hybridoma cells. Nutrition plays an important role in hybridoma cell survival and amplification, which determines the fusion effect and antibody production. Here we compared the growth and survival rates of hybridoma in a commonly used peritoneal macrophage feeder layer (PMFL) nutrition supply system with a commercial hybridoma feeder additive (HFA) nutrition supply system at the post fusion stage and discussed the titer of monoclonal antibodies by enzyme linked immunosorbent assay (ELISA). Our results indicate that commercially available HFA promotes the survival and amplification of hybridoma clones and improves the titer of monoclonal antibodies indirectly.


  • loading
  • [1]
    Zaroff S, Tan G. Hybridoma technology: the preferred method for monoclonal antibody generation for in vivo applications[J]. Biotechniques, 2019, 67(3): 90−92. doi: 10.2144/btn-2019-0054
    Bayer V. An overview of monoclonal antibodies[J]. Semin Oncol Nurs, 2019, 35(5): 150927. doi: 10.1016/j.soncn.2019.08.006
    Nimmerjahn, Falk. Regulation of immunological responses by the neonatal Fc receptor for IgG, FcRn[M]//Springer. New York: Molecular and cellular mechanisms of antibody activity, 2013: 189–219.
    Heyman B. Regulation of antibody responses via antibodies, complement, and Fc receptors[J]. Annu Rev Immunol, 2000, 18(1): 709−737. doi: 10.1146/annurev.immunol.18.1.709
    Cyster JG, Allen C. B cell responses: cell interaction dynamics and decisions[J]. Cell, 2019, 177(3): 524−540. doi: 10.1016/j.cell.2019.03.016
    Nelson PN, Reynolds GM, Waldron EE, et al. Monoclonal antibodies[J]. Mol Pathol, 2000, 53(3): 111−117. doi: 10.1136/mp.53.3.111
    Adler MJ, Dimitrov DS. Therapeutic antibodies against cancer[J]. Hematol Oncol Clin North Am, 2012, 26(3): 447−481. doi: 10.1016/j.hoc.2012.02.013
    Pento JT. Monoclonal antibodies for the treatment of cancer[J]. Anticancer Res, 2017, 37(11): 5935−5939. doi: 10.21873/anticanres.12040
    Hanack K, Messerschmidt K, Listek M. Antibodies and selection of monoclonal antibodies[J]. Adv Exp Med Biol, 2016, 917: 11−22. doi: 10.1007/978-3-319-32805-8_2
    Van Koecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field[J]. J Transl Med, 2020, 17(1): 54. doi: 10.1186/s12967-019-1804-8
    Zhang CH. Hybridoma technology for the generation of monoclonal antibodies[J]. Methods Mol Biol, 2012, 901: 117−135. doi: 10.1007/978-1-61779-931-0_7
    Zhang RJ, Prabakaran P, Yu X, et al. A platform-agnostic, function first-based antibody discovery strategy using plasmid-free mammalian expression of antibodies[J]. MAbs, 2021, 13(1): 1904546. doi: 10.1080/19420862.2021.1904546
    Zhang Y, Cao P, Lu F, et al. Generation of monoclonal antibodies against natural products[J]. J Vis Exp, 2019, 6(146).
    Khongorzul P, Ling CJ, Khan FU, et al. Antibody-drug conjugates: a comprehensive review[J]. Mol Cancer Res, 2020, 18(1): 3−19. doi: 10.1158/1541-7786.MCR-19-0582
    Mould DR, Meibohm B. Drug development of therapeutic monoclonal antibodies[J]. BioDrugs, 2016, 30(4): 275−293. doi: 10.1007/s40259-016-0181-6
    Ritter MA. Polyclonal and monoclonal antibodies[J]. Methods Mol Med, 2000, 40: 23−34. doi: 10.1385/1-59259-076-4:23
    Ali MG, Zhang Z, Gao Q, et al. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview[J]. Immunol Res, 2020, 68(6): 325−339. doi: 10.1007/s12026-020-09159-z
    McGuire AT. Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design[J]. Curr Opin HIV AIDS, 2019, 14(4): 294−301. doi: 10.1097/COH.0000000000000548
    Zhang ZB, Liu HJ, Guan Q, et al. Advances in the isolation of specific monoclonal rabbit antibodies[J]. Front Immunol, 2017, 8: 494. doi: 10.3389/fimmu.2017.00494
    Harbour C, Barford JP, Low KS. Process development for hybridoma cells[J]. Adv Biochem Eng Biotechnol, 1988, 37: 1−40. doi: 10.1007/BFb0009175
    Elgundi Z, Reslan M, Cruz E, et al. The state-of-play and future of antibody therapeutics[J]. Adv Drug Deliv Rev, 2017, 122: 2−19. doi: 10.1016/j.addr.2016.11.004
    Sepúlveda DE, Meckert PC, Locatelli P, et al. Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells[J]. Cytotechnology, 2016, 68(4): 665−674. doi: 10.1007/s10616-014-9814-0
    Hoffmann P, Jiménez-Diaz M, Weckesser J, et al. Murine bone marrow-derived macrophages constitute feeder cells for human B cell hybridomas[J]. J Immunol Methods, 1996, 196(1): 85−91. doi: 10.1016/0022-1759(96)00121-4
    Shimizu S. The mechanisms of myeloma cell growth[J]. Nihon Rinsho (in Japanese), 1995, 53(3): 557–563.
    Itagaki H, Doi H, Ohkohchi N, et al. Development of new cell fusion technique by laser device and application to bio-medical field[J]. Nihon Rinsho (in Japanese), 1997, 55(10): 2780–2787.
    Fujiwara N, Kobayashi K. Macrophages in inflammation[J]. Curr Drug Targets Inflamm Allergy, 2005, 4(3): 281−286. doi: 10.2174/1568010054022024
    Greenfield EA. Single-cell cloning of hybridoma cells by growth in soft agar[J]. Cold Spring Harbor Protoc, 2019, 2019(11).
    Bougie DW, Sutton J, Aster RH. Characterization of glycoprotein IIb/IIIa‐specific alloantibodies induced by cross‐strain platelet immunization in mice[J]. Transfusion, 2021, 61(4): 1278−1285. doi: 10.1111/trf.16275
    Unterkircher CS, Leão MV, Carvalho YR, et al. Immunization of balb/c mice with modified auto- antigens for induction of autoimmune sialoadenitis[J]. 2007, 18(1): 40–44.
    Greenfield EA. Preparing feeder cell cultures to support hybridoma growth[J]. Cold Spring Harbor Protoc, 2019, 2019(11).
    Mikami T, Makishima F, Suzuki E. Enhancing effect of mouse peritoneal exudate cells and their products on antibody productivity of hybridoma cells: application of in vivo factors to in vitro culture[J]. Cytotechnology, 1991, 7(2): 93−101. doi: 10.1007/BF00350915
    Brodin T, Olsson L, Sjögren HO. Cloning of human hybridoma, myeloma and lymphoma cell lines using enriched human monocytes as feeder layer[J]. J Immunol Methods, 1983, 60(1-2): 1−7. doi: 10.1016/0022-1759(83)90329-0
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (2077) PDF downloads(15) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint