Citation: | Xinxia Chang, Yingjia Zhou, Yufei Wang, Wenwen Zhao, Xiao Zhang. Effects of two different nutrition supply methods on improving hybridoma cell production[J]. Blood&Genomics, 2022, 6(1): 63-68. doi: 10.46701/BG.2022012022007 |
[1] |
Zaroff S, Tan G. Hybridoma technology: the preferred method for monoclonal antibody generation for in vivo applications[J]. Biotechniques, 2019, 67(3): 90−92. doi: 10.2144/btn-2019-0054
|
[2] |
Bayer V. An overview of monoclonal antibodies[J]. Semin Oncol Nurs, 2019, 35(5): 150927. doi: 10.1016/j.soncn.2019.08.006
|
[3] |
Nimmerjahn, Falk. Regulation of immunological responses by the neonatal Fc receptor for IgG, FcRn[M]//Springer. New York: Molecular and cellular mechanisms of antibody activity, 2013: 189–219.
|
[4] |
Heyman B. Regulation of antibody responses via antibodies, complement, and Fc receptors[J]. Annu Rev Immunol, 2000, 18(1): 709−737. doi: 10.1146/annurev.immunol.18.1.709
|
[5] |
Cyster JG, Allen C. B cell responses: cell interaction dynamics and decisions[J]. Cell, 2019, 177(3): 524−540. doi: 10.1016/j.cell.2019.03.016
|
[6] |
Nelson PN, Reynolds GM, Waldron EE, et al. Monoclonal antibodies[J]. Mol Pathol, 2000, 53(3): 111−117. doi: 10.1136/mp.53.3.111
|
[7] |
Adler MJ, Dimitrov DS. Therapeutic antibodies against cancer[J]. Hematol Oncol Clin North Am, 2012, 26(3): 447−481. doi: 10.1016/j.hoc.2012.02.013
|
[8] |
Pento JT. Monoclonal antibodies for the treatment of cancer[J]. Anticancer Res, 2017, 37(11): 5935−5939. doi: 10.21873/anticanres.12040
|
[9] |
Hanack K, Messerschmidt K, Listek M. Antibodies and selection of monoclonal antibodies[J]. Adv Exp Med Biol, 2016, 917: 11−22. doi: 10.1007/978-3-319-32805-8_2
|
[10] |
Van Koecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field[J]. J Transl Med, 2020, 17(1): 54. doi: 10.1186/s12967-019-1804-8
|
[11] |
Zhang CH. Hybridoma technology for the generation of monoclonal antibodies[J]. Methods Mol Biol, 2012, 901: 117−135. doi: 10.1007/978-1-61779-931-0_7
|
[12] |
Zhang RJ, Prabakaran P, Yu X, et al. A platform-agnostic, function first-based antibody discovery strategy using plasmid-free mammalian expression of antibodies[J]. MAbs, 2021, 13(1): 1904546. doi: 10.1080/19420862.2021.1904546
|
[13] |
Zhang Y, Cao P, Lu F, et al. Generation of monoclonal antibodies against natural products[J]. J Vis Exp, 2019, 6(146).
|
[14] |
Khongorzul P, Ling CJ, Khan FU, et al. Antibody-drug conjugates: a comprehensive review[J]. Mol Cancer Res, 2020, 18(1): 3−19. doi: 10.1158/1541-7786.MCR-19-0582
|
[15] |
Mould DR, Meibohm B. Drug development of therapeutic monoclonal antibodies[J]. BioDrugs, 2016, 30(4): 275−293. doi: 10.1007/s40259-016-0181-6
|
[16] |
Ritter MA. Polyclonal and monoclonal antibodies[J]. Methods Mol Med, 2000, 40: 23−34. doi: 10.1385/1-59259-076-4:23
|
[17] |
Ali MG, Zhang Z, Gao Q, et al. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview[J]. Immunol Res, 2020, 68(6): 325−339. doi: 10.1007/s12026-020-09159-z
|
[18] |
McGuire AT. Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design[J]. Curr Opin HIV AIDS, 2019, 14(4): 294−301. doi: 10.1097/COH.0000000000000548
|
[19] |
Zhang ZB, Liu HJ, Guan Q, et al. Advances in the isolation of specific monoclonal rabbit antibodies[J]. Front Immunol, 2017, 8: 494. doi: 10.3389/fimmu.2017.00494
|
[20] |
Harbour C, Barford JP, Low KS. Process development for hybridoma cells[J]. Adv Biochem Eng Biotechnol, 1988, 37: 1−40. doi: 10.1007/BFb0009175
|
[21] |
Elgundi Z, Reslan M, Cruz E, et al. The state-of-play and future of antibody therapeutics[J]. Adv Drug Deliv Rev, 2017, 122: 2−19. doi: 10.1016/j.addr.2016.11.004
|
[22] |
Sepúlveda DE, Meckert PC, Locatelli P, et al. Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells[J]. Cytotechnology, 2016, 68(4): 665−674. doi: 10.1007/s10616-014-9814-0
|
[23] |
Hoffmann P, Jiménez-Diaz M, Weckesser J, et al. Murine bone marrow-derived macrophages constitute feeder cells for human B cell hybridomas[J]. J Immunol Methods, 1996, 196(1): 85−91. doi: 10.1016/0022-1759(96)00121-4
|
[24] |
Shimizu S. The mechanisms of myeloma cell growth[J]. Nihon Rinsho (in Japanese), 1995, 53(3): 557–563.
|
[25] |
Itagaki H, Doi H, Ohkohchi N, et al. Development of new cell fusion technique by laser device and application to bio-medical field[J]. Nihon Rinsho (in Japanese), 1997, 55(10): 2780–2787.
|
[26] |
Fujiwara N, Kobayashi K. Macrophages in inflammation[J]. Curr Drug Targets Inflamm Allergy, 2005, 4(3): 281−286. doi: 10.2174/1568010054022024
|
[27] |
Greenfield EA. Single-cell cloning of hybridoma cells by growth in soft agar[J]. Cold Spring Harbor Protoc, 2019, 2019(11).
|
[28] |
Bougie DW, Sutton J, Aster RH. Characterization of glycoprotein IIb/IIIa‐specific alloantibodies induced by cross‐strain platelet immunization in mice[J]. Transfusion, 2021, 61(4): 1278−1285. doi: 10.1111/trf.16275
|
[29] |
Unterkircher CS, Leão MV, Carvalho YR, et al. Immunization of balb/c mice with modified auto- antigens for induction of autoimmune sialoadenitis[J]. 2007, 18(1): 40–44.
|
[30] |
Greenfield EA. Preparing feeder cell cultures to support hybridoma growth[J]. Cold Spring Harbor Protoc, 2019, 2019(11).
|
[31] |
Mikami T, Makishima F, Suzuki E. Enhancing effect of mouse peritoneal exudate cells and their products on antibody productivity of hybridoma cells: application of in vivo factors to in vitro culture[J]. Cytotechnology, 1991, 7(2): 93−101. doi: 10.1007/BF00350915
|
[32] |
Brodin T, Olsson L, Sjögren HO. Cloning of human hybridoma, myeloma and lymphoma cell lines using enriched human monocytes as feeder layer[J]. J Immunol Methods, 1983, 60(1-2): 1−7. doi: 10.1016/0022-1759(83)90329-0
|