Volume 6 Issue 1
Jun.  2022
Turn off MathJax
Article Contents
Zhenzhen Li, Qunxing An, Jinmei Xu, Jiajia Xin, Yaozhen Chen, Ning An, Shunli Gu, Jing Yi, Wen Yin. Platelets inhibit the proliferation of Staphylococcus epidermidis by directly down-regulating G6PD[J]. Blood&Genomics, 2022, 6(1): 28-35. doi: 10.46701/BG.2022012021131
Citation: Zhenzhen Li, Qunxing An, Jinmei Xu, Jiajia Xin, Yaozhen Chen, Ning An, Shunli Gu, Jing Yi, Wen Yin. Platelets inhibit the proliferation of Staphylococcus epidermidis by directly down-regulating G6PD[J]. Blood&Genomics, 2022, 6(1): 28-35. doi: 10.46701/BG.2022012021131

Platelets inhibit the proliferation of Staphylococcus epidermidis by directly down-regulating G6PD

doi: 10.46701/BG.2022012021131
More Information
  • Corresponding author: Jing Yi, Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. E-mail: yeluo@fmmu.edu.cn; Wen Yin, Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. E-mail: yinwen@fmmu.edu.cn
  • Received Date: 2021-11-13
  • Accepted Date: 2022-03-23
  • Rev Recd Date: 2022-03-17
  • Available Online: 2022-06-30
  • Publish Date: 2022-06-30
  • Beyond their seminal role in hemostasis and thrombosis, platelets (PLTs) are now acknowledged as having multiple roles in the host's defense against infection. PLTs are proven to exert antimicrobial functions in vitro, ex vivo, and in vivo. However, different species of bacteria interact with PLTs differentially. Data concerning the interaction between PLTs and Staphylococcus epidermidis (S. epidermidis), the major prevalent species of nosocomial pathogens, and their related mechanisms are limited. In this study, the direct effects of PLTs on the metabolism and proliferation of S. epidermidis were evaluated. The PLTs from peripheral blood were purified and washed. The PLTs were found to significantly inhibit the proliferation of S. epidermidis when they were cocultured in vitro. Moreover, qRT-PCR showed that the expression of G6PD of the bacteria, a key enzyme in the pentose phosphate pathway, had been down-regulated signally. When the products (GDL, IMP) of the phosphate pentose pathway (PPP) were added to the culture, the antibacterial effect of PLTs was alleviated. This study suggests that PLTs can directly inhibit the proliferation of S. epidermidis and regulate their glucose metabolism, which may play an important role in their direct antimicrobial functions.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    Tande AJ, Osmon DR, Greenwood-Quaintance KE, et al. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci[J]. mBio, 2014, 5(5): e01910−14. doi: 10.1128/mBio.01910-14
    [2]
    Argemi X, Hansmann Y, Prola K, et al. Coagulase-negative staphylococci pathogenomics[J]. Int J Mol Sci, 2019, 20(5): 1215. doi: 10.3390/ijms20051215
    [3]
    Lamagni T. Epidemiology and burden of prosthetic joint infections[J]. J Antimicrob Chemother, 2014, 69(suppl_1): i5−i10. doi: 10.1093/jac/dku247
    [4]
    Li Z, Xiao Z, Li Z, et al. 116 cases of neonatal early-onset or late-onset sepsis: a single center retrospective analysis on pathogenic bacteria species distribution and antimicrobial susceptibility[J]. Int J Clin Exp Med, 2013, 6(8): 693–699.
    [5]
    Franceschi AT, da Cunha ML. Adverse events related to the use of central venous catheters in hospitalized newborns[J]. Rev Lat Am Enfermagem, 2010, 18(2): 196−202. doi: 10.1590/s0104-11692010000200009
    [6]
    Hira V, Sluijter M, Estevao S, et al. Clinical and molecular epidemiologic characteristics of coagulase-negative staphylococcal bloodstream infections in intensive care neonates[J]. Pediatr Infect Dis J, 2007, 26(7): 607−612. doi: 10.1097/INF.0b013e318060cc03
    [7]
    Hischebeth GT, Randau TM, Ploeger MM, et al. Staphylococcus aureus versus Staphylococcus epidermidis in periprosthetic joint infection-Outcome analysis of methicillin-resistant versus methicillin-susceptible strains[J]. Diagn Microbiol Infect Dis, 2019, 93(2): 125−130. doi: 10.1016/j.diagmicrobio.2018.08.012
    [8]
    Klingenberg C, Ronnestad A, Anderson AS, et al. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness[J]. Clin Microbiol Infect, 2007, 13(11): 1100−1111. doi: 10.1111/j.1469-0691.2007.01818.x
    [9]
    Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates[J]. Blood Rev, 2009, 23(4): 177−189. doi: 10.1016/j.blre.2009.04.001
    [10]
    Gordon RJ, Miragaia M, Weinberg AD, et al. Staphylococcus epidermidis colonization is highly clonal across US cardiac centers[J]. J Infect Dis, 2012, 205(9): 1391−1398. doi: 10.1093/infdis/jis218
    [11]
    Raad I, Alrahwan A, Rolston K. Staphylococcus epidermidis: emerging resistance and need for alternative agents[J]. Clin Infect Dis, 1998, 26(5): 1182−1187. doi: 10.1086/520285
    [12]
    Bispo PJ, Hofling-Lima AL, Pignatari AC. Characterization of ocular methicillin-resistant Staphylococcus epidermidis isolates belonging predominantly to clonal complex 2 subcluster Ⅱ[J]. J Clin Microbiol, 2014, 52(5): 1412−1417. doi: 10.1128/JCM.03098-13
    [13]
    Versteeg HH, Heemskerk JW, Levi M, et al. New fundamentals in hemostasis[J]. Physiol Rev, 2013, 93(1): 327−358. doi: 10.1152/physrev.00016.2011
    [14]
    Kaufman RM, Djulbegovic B, Gernsheimer T, et al. Platelet transfusion: a clinical practice guideline from the AABB[J]. Ann Intern Med, 2015, 162(3): 205−213. doi: 10.7326/M14-1589
    [15]
    Estcourt LJ, Birchall J, Allard S, et al. Guidelines for the use of platelet transfusions[J]. Br J Haematol, 2017, 176(3): 365−394. doi: 10.1111/bjh.14423
    [16]
    Yeaman MR. Platelets: at the nexus of antimicrobial defence[J]. Nat Rev Microbiol, 2014, 12(6): 426−437. doi: 10.1038/nrmicro3269
    [17]
    Moutinho B, Pinto B, Cardoso R, et al. Platelets structure, function and modulator capacity in replacement therapy[J]. Cardiovasc Hematol Disord Drug Targets, 2017, 17(3): 180−184. doi: 10.2174/1871529X18666171227152937
    [18]
    Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nat Med, 2007, 13(4): 463−469. doi: 10.1038/nm1565
    [19]
    Cognasse F, Nguyen KA, Damien P, et al. The inflammatory role of platelets via their TLRs and siglec receptors[J]. Front Immunol, 2015, 6: 83. doi: 10.3389/fimmu.2015.00083
    [20]
    Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides[J]. Proc Natl Acad Sci U S A, 2004, 101(19): 7363−7368. doi: 10.1073/pnas.0401567101
    [21]
    Durr M, Peschel A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense[J]. Infect Immun, 2002, 70(12): 6515−6517. doi: 10.1128/IAI.70.12.6515-6517.2002
    [22]
    Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets[J]. Infect Immun, 2002, 70(12): 6524−6533. doi: 10.1128/IAI.70.12.6524-6533.2002
    [23]
    Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway[J]. J Immunol, 2009, 182(12): 7997−8004. doi: 10.4049/jimmunol.0802884
    [24]
    Abdulrehman AY, Jackson EC, McNicol A. Platelet activation by Streptococcus sanguinis is accompanied by MAP kinase phosphorylation[J]. Platelets, 2013, 24(1): 6−14. doi: 10.3109/09537104.2012.661105
    [25]
    Sullam PM, Frank U, Yeaman MR, et al. Effect of thrombocytopenia on the early course of streptococcal endocarditis[J]. J Infect Dis, 1993, 168(4): 910−914. doi: 10.1093/infdis/168.4.910
    [26]
    Sun H, Wang X, Degen JL, et al. Reduced thrombin generation increases host susceptibility to group A streptococcal infection[J]. Blood, 2009, 113(6): 1358−1364. doi: 10.1182/blood-2008-07-170506
    [27]
    Semple JW, Freedman J. Platelets and innate immunity[J]. Cell Mol Life Sci, 2010, 67(4): 499−511. doi: 10.1007/s00018-009-0205-1
    [28]
    Katz JN, Kolappa KP, Becker RC. Beyond thrombosis: the versatile platelet in critical illness[J]. Chest, 2011, 139(3): 658−668. doi: 10.1378/chest.10-1971
    [29]
    Yeaman MR, Yount NY. Unifying themes in host defence effector polypeptides[J]. Nat Rev Microbiol, 2007, 5(9): 727−740. doi: 10.1038/nrmicro1744
    [30]
    Maghsoudi O, Ranjbar R, Mirjalili SH, et al. Inhibitory activities of platelet-rich and platelet-poor plasma on the growth of pathogenic bacteria[J]. Iran J Pathol, 2017, 12(1): 79−87. doi: 10.30699/ijp.2017.23386
    [31]
    Hong H, Xiao W, Lazarus HM, et al. Detection of septic transfusion reactions to platelet transfusions by active and passive surveillance[J]. Blood, 2016, 127(4): 496−502. doi: 10.1182/blood-2015-07-655944
    [32]
    Jianjun W, Guiqiu S, Maohong B, et al. Guideline for the collection and preparation of non-transfusion autologous platelet concentrate or platelet-rich plasma from patients in hospitals[J]. Blood Genomics, 2021, 5(2): 73−82. doi: 10.46701/BG.2021022021128
    [33]
    Wong CH, Jenne CN, Petri B, et al. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance[J]. Nat Immunol, 2013, 14(8): 785−792. doi: 10.1038/ni.2631
    [34]
    Iannacone M, Sitia G, Isogawa M, et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage[J]. Nat Med, 2005, 11(11): 1167−1169. doi: 10.1038/nm1317
    [35]
    Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity[J]. Cell Immunol, 2005, 238(1): 1−9. doi: 10.1016/j.cellimm.2005.12.005
    [36]
    Clawson CC, White JG. Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors[J]. Am J Pathol, 1971, 65(2): 367–380.
    [37]
    Kessler CM, Nussbaum E, Tuazon CU. In vitro correlation of platelet aggregation with occurrence of disseminated intravascular coagulation and subacute bacterial endocarditis[J]. J Lab Clin Med, 1987, 109(6): 647–652.
    [38]
    Bayer AS, Ramos MD, Menzies BE, et al. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins[J]. Infect Immun, 1997, 65(11): 4652−4660. doi: 10.1128/iai.65.11.4652-4660.1997
    [39]
    Mohan KV, Rao SS, Gao Y, et al. Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets[J]. Clin Microbiol Infect, 2014, 20(1): O39−O46. doi: 10.1111/1469-0691.12326
    [40]
    Ivanov IB, Gritsenko VA. Comparative activities of cattle and swine platelet microbicidal proteins[J]. Probiotics Antimicrob Proteins, 2009, 1(2): 148. doi: 10.1007/s12602-009-9016-9
    [41]
    Mohan KV, Rao SS, Atreya CD. Evaluation of antimicrobial peptides as novel bactericidal agents for room temperature-stored platelets[J]. Transfusion, 2010, 50(1): 166−173. doi: 10.1111/j.1537-2995.2009.02376.x
    [42]
    Khardori N, Yassien M, Wilson K. Tolerance of Staphylococcus epidermidis grown from indwelling vascular catheters to antimicrobial agents[J]. J Ind Microbiol, 1995, 15(3): 148−151. doi: 10.1007/BF01569818
    [43]
    Otto M. Staphylococcus epidermidis-the 'accidental' pathogen[J]. Nat Rev Microbiol, 2009, 7(8): 555−567. doi: 10.1038/nrmicro2182
    [44]
    Rupp ME, Ulphani JS, Fey PD, et al. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model[J]. Infect Immun, 1999, 67(5): 2627−2632. doi: 10.1128/IAI.67.5.2627-2632.1999
    [45]
    Vuong C, Voyich JM, Fischer ER, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system[J]. Cell Microbiol, 2004, 6(3): 269−275. doi: 10.1046/j.1462-5822.2004.00367.x
    [46]
    Kristian SA, Birkenstock TA, Sauder U, et al. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing[J]. J Infect Dis, 2008, 197(7): 1028−1035. doi: 10.1086/528992
    [47]
    Benjamin RJ, Dy B, Perez J, et al. Bacterial culture of apheresis platelets: a mathematical model of the residual rate of contamination based on unconfirmed positive results[J]. Vox Sang, 2014, 106(1): 23−30. doi: 10.1111/vox.12065
    [48]
    Kou YT, Pagotto F, Hannach B, et al. Fatal false-negative transfusion infection involving a buffy coat platelet pool contaminated with biofilm-positive Staphylococcus epidermidis: a case report[J]. Transfusion, 2015, 55(10): 2384−2389. doi: 10.1111/trf.13154
    [49]
    Kerrigan SW, Clarke N, Loughman A, et al. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro[J]. Arterioscl Throm Vas Biol, 2008, 28(2): 335−340. doi: 10.1161/ATVBAHA.107.152058
    [50]
    Xu J, Yi J, Zhang H, et al. Platelets directly regulate DNA damage and division of Staphylococcus aureus[J]. FASEB J, 2018, 32(7): 3707−3716. doi: 10.1096/fj.201701190R
    [51]
    Horecker BL. The pentose phosphate pathway[J]. J Biol Chem, 2002, 277(50): 47965−47971. doi: 10.1074/jbc.X200007200
    [52]
    Zamboni N, Fischer E, Laudert D, et al. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway[J]. J Bacteriol, 2004, 186(14): 4528−4534. doi: 10.1128/JB.186.14.4528-4534.2004
    [53]
    Youssefian T, Drouin A, Masse JM, et al. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation[J]. Blood, 2002, 99(11): 4021−4029. doi: 10.1182/blood-2001-12-0191
    [54]
    Yeaman MR. The role of platelets in antimicrobial host defense[J]. Clin Infect Dis, 1997, 25(5): 951−970. doi: 10.1086/516120
    [55]
    Krijgsveld J, Zaat SA, Meeldijk J, et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines[J]. J Biol Chem, 2000, 275(27): 20374−20381. doi: 10.1074/jbc.275.27.20374
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (178) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return