Citation: | Gradimir Misevic. Single cell human genomic analyses: a way to refine the knowledge of cellular heterogeneity origins in individual subject[J]. Blood&Genomics, 2021, 5(2): 83-96. doi: 10.46701/BG.2021022021112 |
[1] |
Navin NE. The first five years of single-cell cancer genomics and beyond[J]. Genome Res, 2015, 25(10): 1499−1507. doi: 10.1101/gr.191098.115
|
[2] |
Human Genome Reference Program[EB/OL]. [2021-10-24]. https://www.genome.gov/Funded-Programs-Projects/Human-Genome-Reference-Program.
|
[3] |
Human Genome Project Results[EB/OL]. (2018-11-12) [2021-10-24]. https://www.genome.gov/human-genome-project/results.
|
[4] |
Genome Reference Consortium Human Build 38 patch release 13[EB/OL]. (2019-02-28) [2021-10-24]. https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/.
|
[5] |
Genome Assemblies[EB/OL]. [2021-10-24]. https://www.ncbi.nlm.nih.gov/grc/data.
|
[6] |
Human Genome Assembly GRCh38. p13[EB/OL]. [2021-10-24]. https://www.ncbi.nlm.nih.gov/grc/human/data.
|
[7] |
Human (GRCh38. P13)[EB/OL]. [2021-10-24]. https://www.ensembl.org/Homo_sapiens/Info/Index.
|
[8] |
Cell Biology by the Numbers[EB/OL]. [2021-10-24]. http://book.bionumbers.org/.
|
[9] |
Shafin K, Pesout T, Lorig-Roach R, et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes[J]. Nat Biotechnol, 2020, 38(9): 1044−1053. doi: 10.1038/s41587-020-0503-6
|
[10] |
Baslan T, Kendall J, Rodgers L, et al. Genome-wide copy number analysis of single cells[J]. Nat Protoc, 2012, 7(6): 1024−1041. doi: 10.1038/nprot.2012.039
|
[11] |
Bianconi E, Piovesan A, Facchin F, et al. An estimation of the number of cells in the human body[J]. Ann Hum Biol, 2013, 40(6): 463−471. doi: 10.3109/03014460.2013.807878
|
[12] |
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533. doi: 10.1371/journal.pbio.1002533
|
[13] |
Vickaryous MK, Hall BK. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest[J]. Biol Rev Camb Philos Soc, 2006, 81(3): 425−455. doi: 10.1017/S1464793106007068
|
[14] |
Misevic G, Garbarino E. Glycan-to-glycan binding: molecular recognition through polyvalent interactions mediates specific cell adhesion[J]. Molecules, 2021, 26(2): 397. doi: 10.3390/molecules26020397
|
[15] |
Svensson V, Beltrame EDV, Pachter L. A curated database reveals trends in single-cell transcriptomics[J]. Database(Oxford), 2020: baaa073.
|
[16] |
Bagnoli JJWB, Ziegenhain C, Janjic A, et al. McSCRB-seq protocol: version 2[EB/OL]. (2018-05-22) [2021-10-24]. https://www.protocols.io/view/mcscrb-seq-protocol-p9kdr4w.
|
[17] |
ScRNASeqDB[EB/OL]. [2021-10-24]. https://bioinfo.uth.edu/scrnaseqdb/.
|
[18] |
Gene Expression Ominbus[EB/OL]. [2021-10-24]. https://www.ncbi.nlm.nih.gov/geo/.
|
[19] |
Picelli S, Faridani OR, Björklund ÅK, et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nat Protoc, 2014, 9(1): 171−181. doi: 10.1038/nprot.2014.006
|
[20] |
The Human Protein Atlas[EB/OL]. [2021-10-24]. https://www.proteinatlas.org/.
|
[21] |
Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics Tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. doi: 10.1126/science.1260419
|
[22] |
Leung D, Jung I, Rajagopal N, et al. Integrative analysis of haplotype-resolved epigenomes across human tissues[J]. Nature, 2015, 518(7539): 350−354. doi: 10.1038/nature14217
|
[23] |
Stevens WBC, Netea MG, Kater AP, et al. 'Trained immunity': consequences for lymphoid malignancies[J]. Haematologica, 2016, 101(12): 1460−1468. doi: 10.3324/haematol.2016.149252
|
[24] |
Kawamura YI, Toyota M, Kawashima R, et al. DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer[J]. Gastroenterology, 2008, 135(1): 142−151. doi: 10.1053/j.gastro.2008.03.031
|
[25] |
Saeed S, Quintin J, Kerstens HHD, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity[J]. Science, 2014, 345(6204): 1251086. doi: 10.1126/science.1251086
|
[26] |
Álvarez-Errico D, Vento-Tormo R, Sieweke M, et al. Epigenetic control of myeloid cell differentiation, identity and function[J]. Nat Rev Immunol, 2015, 15(1): 7−17. doi: 10.1038/nri3777
|
[27] |
Stefan M, Wei C, Lombardi A, et al. Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity[J]. Proc Natl Acad Sci, 2014, 111(34): 12562−12567. doi: 10.1073/pnas.1408821111
|
[28] |
Zou Y, Sunshine MJ, Taniuchi I, et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage[J]. Nat Genet, 2001, 29(3): 332−336. doi: 10.1038/ng750
|
[29] |
Antony P, Rose M, Heidenreich A, et al. Epigenetic inactivation of ST6GAL1 in human bladder cancer[J]. BMC Cancer, 2014, 14: 901. doi: 10.1186/1471-2407-14-901
|
[30] |
Lo PK, Zhou Q. Emerging techniques in single-cell epigenomics and their applications to cancer research[J]. J Clin Genom, 2018, 1(1). doi: 10.4172/JCG.1000103
|
[31] |
Jerne NK, Köhler GJF, Milstein C. The Nobel Prize in physiology or medicine 1984[EB/OL] (2010-09-06) [2021-10-24]. https://www.nobelprize.org/prizes/medicine/1984/speedread/.
|
[32] |
Doherty PC, Zinkernagel RM. The Nobel Prize in physiology or medicine 1996[EB/OL]. (2010-09-06) [2021-10-24].https://www.nobelprize.org/prizes/medicine/1996/speedread/.
|
[33] |
Susumu T. The Nobel Prize in physiology or medicine 1987[EB/OL]. (2010-09-06) [2021-10-24]. https://www.nobelprize.org/prizes/medicine/1987/speedread/.
|
[34] |
Gao R, Davis A, McDonald TO, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer[J]. Nat Genet, 2016, 48(10): 1119−1130. doi: 10.1038/ng.3641
|
[35] |
Taylor AM, Shih J, Ha G, et al. Genomic and functional approaches to understanding cancer aneuploidy[J]. Cancer Cell, 2018, 33(4): 676−689.e3. doi: 10.1016/j.ccell.2018.03.007
|
[36] |
Davoli T, Uno H, Wooten EC, et al. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy[J]. Science, 2017, 355(6322): eaaf8399. doi: 10.1126/science.aaf8399
|
[37] |
Wakeman JA, Hmadcha A, Soria B, et al. The immortal strand hypothesis: still non-randomly segregating opinions[J]. Biomol Concepts, 2012, 3(3): 203−211. doi: 10.1515/bmc-2011-0053
|
[38] |
McVean GAT, Myers SR, Hunt S, et al. The fine-scale structure of recombination rate variation in the human genome[J]. Science, 2004, 304(5670): 581−584. doi: 10.1126/science.1092500
|
[39] |
Coufal NG, Garcia-Perez JL, Peng GE, et al. L1 retrotransposition in human neural progenitor cells[J]. Nature, 2009, 460(7259): 1127−1131. doi: 10.1038/nature08248
|
[40] |
Ando Y, Kwon ATJ, Shin JW. An era of single-cell genomics consortia[J]. Exp Mol Med, 2020, 52(9): 1409−1418. doi: 10.1038/s12276-020-0409-x
|
[41] |
How big are genomes? [EB/OL]. [2021-10-24]. http://book.bionumbers.org/.
|
[42] |
Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing[J]. Nature, 2011, 472(7341): 90−94. doi: 10.1038/nature09807
|
[43] |
What is the macromolecular composition of the cell? [EB/OL]. [2021-10-24]. http://book.bionumbers.org/how-many-proteins-are-in-a-cell/.
|
[44] |
Lynch M, Marinov GK. The bioenergetic costs of a gene[J]. Proc Natl Acad Sci, 2015, 112(51): 15690−15695. doi: 10.1073/pnas.1514974112
|
[45] |
Gross A, Schoendube J, Zimmermann S, et al. Technologies for single-cell isolation[J]. Int J Mol Sci, 2015, 16(8): 16897−16919. doi: 10.3390/ijms160816897
|
[46] |
Hu P, Zhang W, Xin H, et al. Single cell isolation and analysis[J]. Front Cell Dev Biol, 2016, 4: 116. doi: 10.3389/fcell.2016.00116
|
[47] |
Zong C, Lu S, Chapman AR, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012, 338(6114): 1622−1626. doi: 10.1126/science.1229164
|
[48] |
Paolillo C, Londin E, Fortina P. Single-cell genomics[J]. Clin Chem, 2019, 65(8): 972−985. doi: 10.1373/clinchem.2017.283895
|
[49] |
Wang Y, Waters J, Leung ML, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing[J]. Nature, 2014, 512(7513): 155−160. doi: 10.1038/nature13600
|
[50] |
Grün D, Oudenaarden AV. Design and analysis of single-cell sequencing experiments[J]. Cell, 2015, 163(4): 799−810. doi: 10.1016/j.cell.2015.10.039
|
[51] |
Zahn H, Steif A, Laks E, et al. Scalable whole-genome single-cell library preparation without preamplification[J]. Nat Methods, 2017, 14(2): 167−173. doi: 10.1038/nmeth.4140
|
[52] |
Eirew P, Steif A, Khattra J, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution[J]. Nature, 2015, 518(7539): 422−426. doi: 10.1038/nature13952
|
[53] |
Kim C, Gao R, Sei E, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing[J]. Cell, 2018, 173(4): 879−893.e13. doi: 10.1016/j.cell.2018.03.041
|
[54] |
Nagasawa S, Kuze Y, Maeda I, et al. Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast[J]. Commun Biol, 2021, 4(1): 438. doi: 10.1038/s42003-021-01959-9
|
[55] |
Li Y, Xu X, Song L, et al. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer[J]. Gigascience, 2012, 1(1): 12. doi: 10.1186/2047-217X-1-12
|
[56] |
Xu X, Hou Y, Yin X, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor[J]. Cell, 2012, 148(5): 886−895. doi: 10.1016/j.cell.2012.02.025
|
[57] |
Tan KT, Kim HJ, Carrot-Zhang J, et al. Haplotype-resolved germline and somatic alterations in renal medullary carcinomas[J]. Genome Med, 2021, 13(1): 114. doi: 10.1186/s13073-021-00929-4
|
[58] |
Duan M, Hao JF, Cui SJ, et al. Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing[J]. Cell Res, 2018, 28(3): 359−373. doi: 10.1038/cr.2018.11
|
[59] |
Hou Y, Song L, Zhu P, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm[J]. Cell, 2012, 148(5): 873−885. doi: 10.1016/j.cell.2012.02.028
|
[60] |
Jan M, Snyder TM, Corces-Zimmerman MR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia[J]. Sci Transl Med, 2012, 4(149): 149ra118. doi: 10.1126/scitranslmed.3004315
|
[61] |
Majeti R. Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia[J]. Best Pract Res Clin Haematol, 2014, 27(3–4): 229−234. doi: 10.1016/j.beha.2014.10.003
|
[62] |
Morita K, Wang F, Jahn K, et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics[J]. Nat Commun, 2020, 11(1): 5327. doi: 10.1038/s41467-020-19119-8
|
[63] |
Francis JM, Zhang CZ, Maire CL, et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing[J]. Cancer Discov, 2014, 4(8): 956−971. doi: 10.1158/2159-8290.CD-13-0879
|
[64] |
Gawad C, Koh W, Quake SR. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics[J]. Proc Natl Acad Sci, 2014, 111(50): 17947−17952. doi: 10.1073/pnas.1420822111
|
[65] |
Wang H, Meng D, Guo H, et al. Single-cell sequencing, an advanced technology in lung cancer research[J]. Onco Targets Ther, 2021, 14: 1895−1909. doi: 10.2147/OTT.S295102
|
[66] |
Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy[J]. Cancer Cell, 2014, 25(1): 91−101. doi: 10.1016/j.ccr.2013.12.015
|
[67] |
Lohr JG, Adalsteinsson VA, Cibulskis K, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer[J]. Nat Biotechnol, 2014, 32(5): 479−484. doi: 10.1038/nbt.2892
|
[68] |
Heitzer E, Auer M, Gasch C, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing[J]. Cancer Res, 2013, 73(10): 2965−2975. doi: 10.1158/0008-5472.CAN-12-4140
|
[69] |
Ni X, Zhuo M, Su Z, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients[J]. Proc Natl Acad Sci, 2013, 110(52): 21083−21088. doi: 10.1073/pnas.1320659110
|
[70] |
Satas G, Zaccaria S, Mon G, et al. Scarlet: single-cell tumor phylogeny inference with copy-number constrained mutation losses[J]. Cell Syst, 2020, 10(4): 323−332.e8. doi: 10.1016/j.cels.2020.04.001
|
[71] |
Wang RJ, Lin DY, Jiang YC. Scope: a normalization and copy-number estimation method for single-cell DNA sequencing[J]. Cell Syst, 2020, 10(5): 445−452.e6. doi: 10.1016/j.cels.2020.03.005
|
[72] |
Chen ZW, Gong FZ, Wan L, et al. RobustClone: a robust PCA method for tumor clone and evolution inference from single-cell sequencing data[J]. Bioinformatics, 2020, 36(11): 3299−3306. doi: 10.1093/bioinformatics/btaa172
|
[73] |
Zaccaria S, Raphael BJ. Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL[J]. Nat Biotechnol, 2021, 39(2): 207−214. doi: 10.1038/s41587-020-0661-6
|
[74] |
Myers MA, Zaccaria S, Raphael BJ. Identifying tumor clones in sparse single-cell mutation data[J]. Bioinformatics, 2020, 36: i186−i193. doi: 10.1093/bioinformatics/btaa449
|
[75] |
Ferronika P, Bos HVD, Taudt A, et al. Copy number alterations assessed at the single-cell level revealed mono- and polyclonal seeding patterns of distant metastasis in a small-cell lung cancer patient[J]. Ann Oncol, 2017, 28(7): 1668−1670. doi: 10.1093/annonc/mdx182
|
[76] |
Kaur P, Campo D, Porras TB, et al. A pilot study for the feasibility of exome-sequencing in circulating tumor cells versus single metastatic biopsies in breast cancer[J]. Int J Mol Sci, 2020, 21(14): 1−29. doi: 10.3390/ijms21144826
|
[77] |
Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells[J]. Nat Rev Cancer, 2019, 19(10): 553−567. doi: 10.1038/s41568-019-0180-2
|
[78] |
Liu RY, Gao QS, Foltz SM, et al. Co-evolution of tumor and immune cells during progression of multiple myeloma[J]. Nat Commun, 2021, 12(1): 2559. doi: 10.1038/s41467-021-22804-x
|
[79] |
Wu CY, Lau BT, Kim HS, et al. Integrative single-cell analysis of allele-specific copy number alterations and chromatin accessibility in cancer[J]. Nat Biotechnol, 2021, 39(10): 1259−1269. doi: 10.1038/s41587-021-00911-w
|
[80] |
Nieto P, Elosua-Bayes M, Trincado JL, et al. A single-cell tumor immune atlas for precision oncology[J]. Genome Res, 2021, 31(10): 1913−1926. doi: 10.1101/gr.273300.120
|
[81] |
Cai X, Evrony GD, Lehmann HS, et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain[J]. Cell Rep, 2015, 10(4): 645. doi: 10.1016/j.celrep.2015.01.028
|
[82] |
McConnell MJ, Lindberg MR, Brennand KJ, et al. Mosaic copy number variation in human neurons[J]. Science, 2013, 342(6158): 632−637. doi: 10.1126/science.1243472
|
[83] |
Rehen SK, McConnell MJ, Kaushal D, et al. Chromosomal variation in neurons of the developing and adult mammalian nervous system[J]. Proc Natl Acad Sci, 2001, 98(23): 13361−13366. doi: 10.1073/pnas.231487398
|
[84] |
Knouse KA, Wu J, Whittaker CA, et al. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues[J]. Proc Natl Acad Sci, 2014, 111(37): 13409−13414. doi: 10.1073/pnas.1415287111
|
[85] |
Wang J, Fan HC, Behr B, et al. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm[J]. Cell, 2012, 150(2): 402−412. doi: 10.1016/j.cell.2012.06.030
|