Citation: | Andres Stucky, Li Gao, Lan Sun, Shengwen Calvin Li, Xuelian Chen, Tiffany H. Park, Jin Cai, Mustafa H. Kabeer, Xi Zhang, Uttam K. Sinha, Jiang F. Zhong. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach[J]. Blood&Genomics, 2021, 5(1): 29-39. doi: 10.46701/BG.2021012021106 |
[1] |
Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer[J]. Oral Oncol, 2009, 45(4-5): 309−316. doi: 10.1016/j.oraloncology.2008.06.002
|
[2] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394−424. doi: 10.3322/caac.21492
|
[3] |
Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis[J]. Oral Maxillofac Surg Clin North Am, 2014, 26(2): 123−141. doi: 10.1016/j.coms.2014.01.001
|
[4] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7−34. doi: 10.3322/caac.21551
|
[5] |
Buduru SD, Gulei D, Zimta AA, et al. The potential of different origin stem cells in modulating oral bone regeneration processes[J]. Cells, 2019, 8(1): 29. doi: 10.3390/cells8010029
|
[6] |
He XH, Li BS, Shao Y, et al. Cell fusion between gastric epithelial cells and mesenchymal stem cells results in epithelial-to-mesenchymal transition and malignant transformation[J]. BMC Cancer, 2015, 15: 24. doi: 10.1186/s12885-015-1027-1
|
[7] |
Huang QK, Pu M, Zhao G, et al. Tg737 regulates epithelial-mesenchymal transition and cancer stem cell properties via a negative feedback circuit between Snail and HNF4α during liver stem cell malignant transformation[J]. Cancer Lett, 2017, 402: 52−60. doi: 10.1016/j.canlet.2017.05.005
|
[8] |
Caplan AI. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5): 641−650. doi: 10.1002/jor.1100090504
|
[9] |
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143−147. doi: 10.1126/science.284.5411.143
|
[10] |
Gambera S, Abarrategi A, Rodríguez-Milla MA, et al. Role of activator protein-1 complex on the phenotype of human osteosarcomas generated from mesenchymal stem cells[J]. Stem Cells, 2018, 36(10): 1487−1500. doi: 10.1002/stem.2869
|
[11] |
Rossnagl S, Ghura H, Groth C, et al. A subpopulation of stromal cells controls cancer cell homing to the bone marrow[J]. Cancer Res, 2018, 78(1): 129−142. doi: 10.1158/0008-5472.CAN-16-3507
|
[12] |
Li SC, Lee KL, Luo J, et al. Convergence of normal stem cell and cancer stem cell developmental stage: Implication for differential therapies[J]. World J Stem Cells, 2011, 3(9): 83−88. doi: 10.4252/wjsc.v3.i9.83
|
[13] |
Martínez-Delgado P, Lacerenza S, Obrador-Hevia A, et al. Cancer stem cells in soft-tissue sarcomas[J]. Cells, 2020, 9(6): 1449. doi: 10.3390/cells9061449
|
[14] |
Park JW, Lee JK, Sheu KM, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage[J]. Science, 2018, 362(6410): 91−95. doi: 10.1126/science.aat5749
|
[15] |
Li ZJ, Zhang C, Weiner LP, et al. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes[J]. Biotechnol Adv, 2013, 31(2): 312−317. doi: 10.1016/j.biotechadv.2012.12.003
|
[16] |
Chen XL, Wen Q, Stucky A, et al. Relapse pathway of glioblastoma revealed by single-cell molecular analysis[J]. Carcinogenesis, 2018, 39(7): 931−936. doi: 10.1093/carcin/bgy052
|
[17] |
Li SC, Stucky A, Chen XL, et al. Single-cell transcriptomes reveal the mechanism for a breast cancer prognostic gene panel[J]. Oncotarget, 2018, 9(70): 33290−33301. doi: 10.18632/oncotarget.26044
|
[18] |
Zhang BS, Song LW, Cai JL, et al. The LIM protein Ajuba/SP1 complex forms a feed forward loop to induce SP1 target genes and promote pancreatic cancer cell proliferation[J]. J Exp Clin Cancer Res, 2019, 38(1): 205. doi: 10.1186/s13046-019-1203-2
|
[19] |
Zhang M, Singh R, Peng S, et al. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors[J]. Cancer Lett, 2017, 392: 71−82. doi: 10.1016/j.canlet.2017.01.024
|
[20] |
The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576−582. doi: 10.1038/nature14129
|
[21] |
Zhang C, Wei S, Sun WP, et al. Super-enhancer-driven AJUBA is activated by TCF4 and involved in epithelial-mesenchymal transition in the progression of Hepatocellular Carcinoma[J]. Theranostics, 2020, 10(20): 9066−9082. doi: 10.7150/thno.45349
|
[22] |
Liang XH, Zhang GX, Zeng YB, et al. LIM protein JUB promotes epithelial-mesenchymal transition in colorectal cancer[J]. Cancer Sci, 2014, 105(6): 660−666. doi: 10.1111/cas.12404
|
[23] |
Liu M, Jiang K, Lin GB, et al. Ajuba inhibits hepatocellular carcinoma cell growth via targeting of β-catenin and YAP signaling and is regulated by E3 ligase Hakai through neddylation[J]. J Exp Clin Cancer Res, 2018, 37(1): 165. doi: 10.1186/s13046-018-0806-3
|
[24] |
Haraguchi K, Ohsugi M, Abe Y, et al. Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3β-mediated phosphorylation of β-catenin[J]. Oncogene, 2008, 27(3): 274−284. doi: 10.1038/sj.onc.1210644
|
[25] |
Yang F, Zeng QH, Yu GY, et al. Wnt/β-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC[J]. Cell Signal, 2006, 18(5): 679−687. doi: 10.1016/j.cellsig.2005.06.015
|
[26] |
Kartha VK, Alamoud KA, Sadykov K, et al. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer[J]. Genome Med, 2018, 10(1): 54. doi: 10.1186/s13073-018-0569-7
|
[27] |
Javed Z, Farooq HM, Ullah M, et al. Wnt signaling: a potential therapeutic target in head and neck squamous cell carcinoma[J]. Asian Pac J Cancer Prev, 2019, 20(4): 995−1003. doi: 10.31557/APJCP.2019.20.4.995
|
[28] |
Krüger M, Amort J, Wilgenbus P, et al. The anti-apoptotic PON2 protein is Wnt/β-catenin-regulated and correlates with radiotherapy resistance in OSCC patients[J]. Oncotarget, 2016, 7(32): 51082−51095. doi: 10.18632/oncotarget.9013
|
[29] |
Li L, Liu HC, Wang C, et al. Overexpression of β-catenin induces cisplatin resistance in oral squamous cell carcinoma[J]. BioMed Res Int, 2016, 2016: 5378567. doi: 10.1155/2016/5378567
|
[30] |
Lee GA, Hwang KA, Choi KC. Roles of dietary phytoestrogens on the regulation of epithelial-mesenchymal transition in diverse cancer metastasis[J]. Toxins, 2016, 8(6): 162. doi: 10.3390/toxins8060162
|
[31] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
|
[32] |
Church DM, Schneider VA, Graves T, et al. Modernizing reference genome assemblies[J]. PLoS Biol, 2011, 9(7): e1001091. doi: 10.1371/journal.pbio.1001091
|
[33] |
Cerami E, Gao JJ, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5): 401−404. doi: 10.1158/2159-8290.CD-12-0095
|
[34] |
Gao JJ, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1. doi: 10.1126/scisignal.2004088
|
[35] |
Rhodes DR, Yu JJ, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform[J]. Neoplasia, 2004, 6(1): 1−6. doi: 10.1016/S1476-5586(04)80047-2
|
[36] |
Chen Y, Millstein J, Liu Y, et al. Single-cell digital lysates generated by phase-switch microfluidic device reveal transcriptome perturbation of cell cycle[J]. ACS Nano, 2018, 12(5): 4687−4694. doi: 10.1021/acsnano.8b01272
|
[37] |
Pyeon D, Newton MA, Lambert PF, et al. Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers[J]. Cancer Res, 2007, 67(10): 4605−4619. doi: 10.1158/0008-5472.CAN-06-3619
|
[38] |
Sengupta S, den Boon JA, Chen IH, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma[J]. Cancer Res, 2006, 66(16): 7999−8006. doi: 10.1158/0008-5472.CAN-05-4399
|
[39] |
Rickman DS, Millon R, de Reynies A, et al. Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays[J]. Oncogene, 2008, 27(51): 6607−6622. doi: 10.1038/onc.2008.251
|
[40] |
Ye H, Yu TW, Temam S, et al. Transcriptomic dissection of tongue squamous cell carcinoma[J]. BMC Genomics, 2008, 9: 69. doi: 10.1186/1471-2164-9-69
|
[41] |
Peng CH, Liao CT, Peng SC, et al. A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma[J]. PLoS One, 2011, 6(8): e23452. doi: 10.1371/journal.pone.0023452
|
[42] |
Guo W, Zhang HP, Yang AM, et al. Homocysteine accelerates atherosclerosis by inhibiting scavenger receptor class B member1 via DNMT3b/SP1 pathway[J]. J Mol Cell Cardiol, 2019, 138: 34−48. doi: 10.1016/j.yjmcc.2019.11.145
|
[43] |
Jones-Villeneuve EM, McBurney MW, Rogers KA, et al. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells[J]. J Cell Biol, 1982, 94(2): 253−262. doi: 10.1083/jcb.94.2.253
|
[44] |
Kaiser S, Park YK, Franklin JL, et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer[J]. Genome Biol, 2007, 8(7): R131. doi: 10.1186/gb-2007-8-7-r131
|
[45] |
Skrzypczak M, Goryca K, Rubel T, et al. Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability[J]. PLoS One, 2010, 5(10): e13091. doi: 10.1371/journal.pone.0013091
|
[46] |
Gaedcke J, Grade M, Jung K, et al. Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas[J]. Genes Chromosomes Cancer, 2010, 49(11): 1024−1034. doi: 10.1002/gcc.20811
|
[47] |
D'Errico M, de Rinaldis E, Blasi MF, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability[J]. Eur J Cancer, 2009, 45(3): 461−469. doi: 10.1016/j.ejca.2008.10.032
|
[48] |
Hong Y, Downey T, Eu KW, et al. A 'metastasis-prone' signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics[J]. Clin Exp Metastasis, 2010, 27(2): 83−90. doi: 10.1007/s10585-010-9305-4
|
[49] |
Su H, Hu N, Yang HH, et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes[J]. Clin Cancer Res, 2011, 17(9): 2955−2966. doi: 10.1158/1078-0432.CCR-10-2724
|
[50] |
Liang Y, Diehn M, Watson N, et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme[J]. Proc Natl Acad Sci USA, 2005, 102(16): 5814−5819. doi: 10.1073/pnas.0402870102
|
[51] |
Freije WA, Castro-Vargas FE, Fang ZX, et al. Gene expression profiling of gliomas strongly predicts survival[J]. Cancer Res, 2004, 64(18): 6503−6510. doi: 10.1158/0008-5472.CAN-04-0452
|
[52] |
Umbas R, Schalken JA, Aalders TW, et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer[J]. Cancer Res, 1992, 52(18): 5104−5109.
|
[53] |
Cheng L, Nagabhushan M, Pretlow TP, et al. Expression of E-cadherin in primary and metastatic prostate cancer[J]. Am J Pathol, 1996, 148(5): 1375−1380.
|
[54] |
Derycke LD, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling[J]. Int J Dev Biol, 2004, 48(5-6): 463−476. doi: 10.1387/ijdb.041793ld
|
[55] |
Lin Y, Ge XX, Zhang XF, et al. Protocadherin-8 promotes invasion and metastasis via laminin subunit γ2 in gastric cancer[J]. Cancer Sci, 2018, 109(3): 732−740. doi: 10.1111/cas.13502
|
[56] |
Seo E, Basu-Roy U, Gunaratne PH, et al. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage[J]. Cell Rep, 2013, 3(6): 2075−2087. doi: 10.1016/j.celrep.2013.05.029
|
[57] |
Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas[J]. Oncogene, 2012, 31(18): 2270−2282. doi: 10.1038/onc.2011.405
|
[58] |
Park SB, Seo KW, So AY, et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC[J]. Cell Death Differ, 2012, 19(3): 534−545. doi: 10.1038/cdd.2011.137
|
[59] |
Mansukhani A, Ambrosetti D, Holmes G, et al. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation[J]. J Cell Biol, 2005, 168(7): 1065−1076. doi: 10.1083/jcb.200409182
|
[60] |
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985−999. doi: 10.1016/j.cell.2017.05.016
|
[61] |
Atlasi Y, Noori R, Gaspar C, et al. Wnt signaling regulates the lineage differentiation potential of mouse embryonic stem cells through Tcf3 down-regulation[J]. PLoS Genet, 2013, 9(5): e1003424. doi: 10.1371/journal.pgen.1003424
|
[62] |
Acebron SP, Karaulanov E, Berger BS, et al. Mitotic wnt signaling promotes protein stabilization and regulates cell size[J]. Mol Cell, 2014, 54(4): 663−674. doi: 10.1016/j.molcel.2014.04.014
|
[63] |
Clevers H, Loh KM, Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control[J]. Science, 2014, 346(6205): 1248012. doi: 10.1126/science.1248012
|
[64] |
Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis[J]. Cell, 2008, 134(4): 646−656. doi: 10.1016/j.cell.2008.06.026
|
[65] |
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017, 36(11): 1461−1473. doi: 10.1038/onc.2016.304
|
[66] |
Clevers H. Wnt/β-catenin signaling in development and disease[J]. Cell, 2006, 127(3): 469−480. doi: 10.1016/j.cell.2006.10.018
|
[67] |
Iwai S, Katagiri W, Kong C, et al. Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2005, 131(12): 773−782. doi: 10.1007/s00432-005-0027-y
|
[68] |
González-Moles MA, Ruiz-Ávila I, Gil-Montoya JA, et al. β-catenin in oral cancer: an update on current knowledge[J]. Oral Oncol, 2014, 50(9): 818−824. doi: 10.1016/j.oraloncology.2014.06.005
|
[69] |
Beck TN, Golemis EA. Genomic insights into head and neck cancer[J]. Cancers Head Neck, 2016, 1: 1. doi: 10.1186/s41199-016-0003-z
|
[70] |
Padhi S, Saha A, Kar M, et al. Clinico-pathological correlation of β-catenin and telomere dysfunction in head and neck squamous cell carcinoma patients[J]. J Cancer, 2015, 6(2): 192−202. doi: 10.7150/jca.9558
|
[71] |
Alégot H, Markosian C, Rauskolb C, et al. Recruitment of Jub by α-catenin promotes Yki activity and Drosophila wing growth[J]. J Cell Sci, 2019, 132(5): jcs222018. doi: 10.1242/jcs.222018
|
[72] |
Shi XJ, Chen ZL, Hu XD, et al. AJUBA promotes the migration and invasion of esophageal squamous cell carcinoma cells through upregulation of MMP10 and MMP13 expression[J]. Oncotarget, 2016, 7(24): 36407−36418. doi: 10.18632/oncotarget.9239
|
[73] |
Dommann N, Sánchez-Taltavull D, Eggs L, et al. The LIM protein ajuba augments tumor metastasis in colon cancer[J]. Cancers, 2020, 12(7): 1913. doi: 10.3390/cancers12071913
|
[74] |
Pickering CR, Zhou JH, Lee JJ, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma[J]. Clin Cancer Res, 2014, 20(24): 6582−6592. doi: 10.1158/1078-0432.CCR-14-1768
|
![]() |
![]() |