Volume 4 Issue 2
Dec.  2020
Turn off MathJax
Article Contents
Tingting Yang, Zhenqing Feng. Overview of the diversity of erythrocyte blood group antigens[J]. Blood&Genomics, 2020, 4(2): 115-122. doi: 10.46701/BG.2020022020123
Citation: Tingting Yang, Zhenqing Feng. Overview of the diversity of erythrocyte blood group antigens[J]. Blood&Genomics, 2020, 4(2): 115-122. doi: 10.46701/BG.2020022020123

Overview of the diversity of erythrocyte blood group antigens

doi: 10.46701/BG.2020022020123
More Information
  • Corresponding author: Zhenqing Feng, National Health Commission Key Lab. of Antibody Techniques, Nanjing Medical University, Nanjing 211166, China. E-mail: fengzhenqing@njmu.edu.cn
  • Received Date: 2020-09-27
  • Accepted Date: 2020-12-01
  • Rev Recd Date: 2020-11-09
  • Available Online: 2021-07-01
  • Publish Date: 2020-12-30
  • During the differentiation and maturation of erythrocytes, the surface molecules of erythrocytes are gradually expressed and stabilized. These molecules are to be antigenic in addition to their functions of maintain-ing cell membrane structural stability, material transport and exchange of cells and signal transmission between cells. The antigenic molecules on the erythrocyte surface are called erythrocyte blood group antigens. The blood group antigens and their corresponding blood group antibodies in vivo are important indicators for clinical blood transfusion and organ transplantation, and also form the basis for research on blood group related diseases. Three hundred and sixty-eight erythrocyte blood group antigens have been confirmed so far, which are classified into 39 blood group systems, 5 blood group collections and 2 blood group series. Based on the diversity of blood group antigens and their composition of glycolipids, glycoproteins and other molecules, this study mainly reviews the classification, molecular structure, antibody response and gene regulation of blood group antigens, and explains the main reasons for the diversity of blood group antigens.

     

  • Conflict of interests: The authors have no conflict of interest to report.
  • loading
  • [1]
    Landsteiner K, Miller CP. Serological studies on the blood of the primates: iii. distribution of serological factors related to human isoagglutinogens in the blood of lower monkeys[J]. J Exp Med, 1925, 42(6): 863-872. doi: 10.1084/jem.42.6.863
    [2]
    Clausen H, Hakomori S. ABH and related histo-blood group antigens: immunochemical differences in carrier isotypes and their distribution[J]. Vox Sang, 1989, 56(1): 1-20. doi: 10.1111/j.1423-0410.1989.tb03040.x
    [3]
    Daniels GL, Anstee DJ, Cartron JP, et al. Terminology for red cell surface antigens. ISBT Working Party Oslo Report. International Society of Blood Transfusion[J]. Vox Sang, 1999, 77(1): 52-57. doi: 10.1046/j.1423-0410.1999.7710052.x
    [4]
    Bux J. Nomenclature of granulocyte alloantigens. ISBT Working Party on Platelet and Granulocyte Serology, Granulocyte Antigen Working Party. International Society of Blood Transfusion[J]. Transfusion, 1999, 39(6): 662-663. doi: 10.1046/j.1537-2995.1999.39060662.x
    [5]
    Storry JR, Clausen FB, Castilho L, et al. International society of blood transfusion working party on red cell immunogenetics and blood group terminology: report of the Dubai, Copenhagen and Toronto meetings[J]. Vox Sang, 2019, 114(1): 95-102. doi: 10.1111/vox.12717
    [6]
    Avent ND, Reid ME. The Rh blood group system: a review[J]. Blood, 2000, 95(2): 375-387. doi: 10.1182/blood.V95.2.375
    [7]
    Ewald DR, Sumner SC. Blood type biochemistry and human disease[J]. Wiley Interdiscip Rev Syst Biol Med, 2016, 8(6): 517-535. doi: 10.1002/wsbm.1355
    [8]
    Wu AM. Glycan structures and their recognition roles in the human blood group ABH/Ii, Le(a, b, x, y)and Sialyl Le(a, x)active cyst glycoproteins[J]. Glycoconj J, 2019, 36(6): 495-507. doi: 10.1007/s10719-019-09887-x
    [9]
    Bäcker AE, Breimer ME, Samuelsson BE, et al. Bio-chemical and enzymatic characterization of blood group ABH and related histo-blood group glycosphingolipids in the epithelial cells of porcine small intestine[J]. Glycobiology, 1997, 7(7): 943-953. doi: 10.1093/glycob/7.7.943
    [10]
    Sandler SG, Sathiyamoorthy S. Laboratory methods for Rh immunoprophylaxis: a review[J]. Immunohematology, 2010, 26(3): 92-103. http://www.ncbi.nlm.nih.gov/pubmed/21214295
    [11]
    Garcher C, Bara J, Bron A, et al. Expression of mucin peptide and blood group ABH-and Lewis-related carbo-hydrate antigens in normal human conjunctiva[J]. Invest Ophthalmol Vis Sci, 1994, 35(3): 1184-1191. http://www.ncbi.nlm.nih.gov/pubmed/7510273
    [12]
    Clausen H, Levery SB, Nudelman E, et al. Further characterization of type 2 and type 3 chain blood group A glycosphingolipids from human erythrocyte membranes[J]. Biochemistry, 1986, 25(22): 7075-7085. doi: 10.1021/bi00370a048
    [13]
    Hassan SN, Thirumulu PK, Mohamad S, et al. Molecular detection of glycophorins a and B variant phenotypes and their clinical relevance[J]. Transfus Med Rev, 2019, 33(2): 118-124. doi: 10.1016/j.tmrv.2019.02.003
    [14]
    Wei L, Lopez GH, Zhang Y, et al. Genotyping analysis of MNS blood group GP (B-A-B) hybrid glycophorins in the Chinese Southern Han population using a high-resolution melting assay[J]. Transfusion, 2018, 58(7): 1763-1771. doi: 10.1111/trf.14641
    [15]
    Byrne KM, Mercado C, Nnabue TN, et al. Inhibition of blood group antibodies by soluble substances[J]. Immunohematology, 2019, 35(1): 19-22.
    [16]
    Meloncelli PJ, Lowary TL. Synthesis of ABO histo-blood group type Ⅰ and Ⅱ antigens[J]. Carbohydr Res, 2010, 345(16): 2305-2322. doi: 10.1016/j.carres.2010.08.012
    [17]
    Fichou Y, Férec C. NGS and blood group systems: State of the art and perspectives[J]. Transfus Clin Biol, 2017, 24(3): 240-244. doi: 10.1016/j.tracli.2017.06.002
    [18]
    Simmons DP, Savage WJ. Hemolysis from ABO Incompatibility[J]. Hematol Oncol Clin North Am, 2015, 29(3): 429-443. doi: 10.1016/j.hoc.2015.01.003
    [19]
    Thornton NM, Grimsley SP. Clinical significance of antibodies to antigens in the ABO, MNS, P1Pk, Rh, Lutheran, Kell, Lewis, Duffy, Kidd, Diego, Yt, and Xg blood group systems[J]. Immunohematology, 2019, 35(3): 95-101. http://www.researchgate.net/publication/336651011_Clinical_significance_of_antibodies_to_antigens_in_the_ABO_MNS_P1PK_Rh_Lutheran_Kell_Lewis_Duffy_Kidd_Diego_Yt_and_Xg_blood_group_systems
    [20]
    Hsu K, Kuo MS, Yao CC, et al. The MNS glycophorin variant GP. Mur affects differential erythroid expression of Rh/RhAG transcripts[J]. Vox Sang, 2017, 112(7): 671-677. doi: 10.1111/vox.12555
    [21]
    Quraishy N, Sapatnekar S. advances in blood typing[J]. Adv Clin Chem, 2016, 77: 221-269. http://www.sciencedirect.com/science/article/pii/S00652423(16)300518
    [22]
    Kato T, Ishimaru K, Ikeda H. Rh blood group system and Rh antibodies [J]. Nihon Rinsho, 2005, 63(Suppl 7): 670-674.
    [23]
    Zipursky A. Mechanisms of hemolysis[J]. Mead Johnson Symp Perinat Dev Med, 1982(19): 17-24.
    [24]
    Mattos LD. Genetic diversity of the human blood group systems[J]. Rev Bras Hematol Hemoter, 2013, 35(6): 383-384. http://pubmedcentralcanada.ca/pmcc/articles/pmid/24478600
    [25]
    Westhoff CM. Blood group genotyping[J]. Blood, 2019, 133(17): 1814-1820. doi: 10.1182/blood-2018-11-833954
    [26]
    Raud L, Férec C, Fichou Y. From genetic variability to phenotypic expression of blood group systems[J]. Transfus Clin Biol, 2017, 24(4): 472-475. doi: 10.1016/j.tracli.2017.06.011
    [27]
    Chun S, Choi S, Yu H, et al. Cis-AB, the blood group of many faces, is a conundrum to the novice eye[J]. Ann Lab Med, 2019, 39(2): 115-120. doi: 10.3343/alm.2019.39.2.115
    [28]
    Kano T, Kondo K, Hamako J, et al. Effects of plasma glycosyltransferase on the ABO (H) blood group antigens of human von Willebrand factor[J]. Int J Hematol, 2018, 108(2): 139-144. doi: 10.1007/s12185-018-2452-0
    [29]
    Liang YL, Su YQ, Zhang YZ, et al. Establishment and application of a method for determination of glycosyl-transferase activity[J]. J Exp Hematol, 2017, 25(1): 231-234.
    [30]
    Yamamoto M, Cid E, Yamamoto F. Crosstalk between ABO and Forssman (FORS) blood group systems: FORS1 antigen synthesis by ABO gene-encoded glycosyltransferases[J]. Sci Rep, 2017, 7: 41632. doi: 10.1038/srep41632
    [31]
    Gagnon S, Legg M, Sindhuwinata N, et al. High-resolution crystal structures and STD NMR mapping of human ABO(H)blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release[J]. Glycobiology, 2017, 27(10): 966-977. doi: 10.1093/glycob/cwx053
    [32]
    Ryzhov IM, Tuzikov AB, Perry H, et al. Blood group O→A transformation by chemical ligation of erythrocytes[J]. Chembiochem, 2019, 20(2): 131-133. doi: 10.1002/cbic.201800289
    [33]
    Branch D R. Anti-A and anti-B: what are they and where do they come from?[J]. Transfusion, 2015, 55 (Suppl 2): 74-79. doi: 10.1111/trf.13087/pdf
    [34]
    Gao M, Chen YP. The RHD variants in Chinese population[J]. Blood and Genomics, 2020, 1(4): 31-38. http://www.researchgate.net/publication/342667638_The_RHD_variants_in_Chinese_population
    [35]
    El HH, El WM, Ouabdelmoumene Z, et al. Comprehensive phenotypic and molecular investigation of RhD and RhCE variants in Moroccan blood donors[J]. Blood Transfus, 2019, 17(2): 151-156. http://www.ncbi.nlm.nih.gov/pubmed/30418133
    [36]
    Moussa H, Tsochandaridis M, Kacem N, et al. RHD positive among C/E+and D-negative blood donors in Tunisia[J]. Transfus Clin Biol, 2014, 21(6): 320-323. doi: 10.1016/j.tracli.2014.10.004
    [37]
    Denomme GA. Kell and Kx blood group systems[J]. Immunohematology, 2015, 31(1): 14-19. http://www.ncbi.nlm.nih.gov/pubmed/26308465
    [38]
    Westhoff CM, Nance S, Lomas-Francis C, et al. Experience with RHD*weak D type 4.0 in the USA[J]. Blood Transfus, 2019, 17(2): 91-93. http://www.researchgate.net/publication/326580373_Experience_with_RHDweak_D_type_40_in_the_USA
    [39]
    Sandler SG, Chen LN, Flegel WA. Serological weak D phenotypes: a review and guidance for interpreting the RhD blood type using the RHD genotype[J]. Br J Haematol, 2017, 179(1): 10-19. doi: 10.1111/bjh.14757
    [40]
    Wen J, Verhagen O, Jia S, et al. A variant RhAG protein encoded by the RHAG*572A allele causes serological weak D expression while maintaining normal RhCE phenotypes[J]. Transfusion, 2019, 59(1): 405-411. doi: 10.1111/trf.14969
    [41]
    Chou ST, Westhoff CM. The Rh and RhAG blood group systems[J]. Immunohematology, 2010, 26(4): 178-186. http://www.ncbi.nlm.nih.gov/pubmed/22356455
    [42]
    Liu F, Li C, Zhu J, et al. ABO blood type and risk of hepatocellular carcinoma: a meta-analysis[J]. Expert Rev Gastroenterol Hepatol, 2018, 12(9): 927-933. doi: 10.1080/17474124.2018.1500174
    [43]
    Wang J, García-Bailo B, Nielsen DE, et al. ABO genotype, 'blood-type' diet and cardiometabolic risk factors[J]. PLoS One, 2014, 9(1): e84749. doi: 10.1371/journal.pone.0084749
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (47) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return