Citation: | Hongjun Gao, Gradimir Misevic. Microchip technology applications for blood group analysis[J]. Blood&Genomics, 2020, 4(2): 83-95. doi: 10.46701/BG.2020022020109 |
[1] |
Landsteiner K. Ueber Agglutinationserscheinungen normalen menschlichen Blutes[J]. Wien Klin Wochenschr, 1901, 46: 1132-1134. http://ci.nii.ac.jp/naid/10016218927
|
[2] |
International Society of Blood Transfusion (ISBT). Ta-ble of blood group systems[EB/OL]. [2020-06-18]. http://www.isbtweb.org/fileadmin/user_upload/Table_of_blood_group_systems_v6.0_6th_August_2019.pdf.
|
[3] |
Misevic G. ABO blood group system[J]. Asia-Pacific J Blood Type Gene, 2018, 2(2): 71-84.
|
[4] |
Malomgre W, Neumeister B. Recent and future trends in blood group typing[J]. Anal Bioanal Chem, 2009, 393(5): 1443-1451. doi: 10.1007/s00216-008-2411-3
|
[5] |
Langston MM, Procter JL, Cipolone KM, et al. Evaluation of the gel system for ABO grouping and D typing[J]. Transfusion, 1999, 39(3): 300-305. doi: 10.1046/j.1537-2995.1999.39399219288.x
|
[6] |
Liu Z, Liu MH, Mercado T, et al. Extended blood group molecular typing and next-generation sequencing[J]. Transfus Med Rev, 2014, 28(4): 177-186. doi: 10.1016/j.tmrv.2014.08.003
|
[7] |
Yamada A, Renault R, Chikina A, et al. T ransient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip[J]. Lab Chip, 2016, 16(24): 4691-4701. doi: 10.1039/C6LC01143H
|
[8] |
Petrik J. Microarray technology: the future of blood testing?[J]. Vox Sang, 2001, 80(1): 1-11. doi: 10.1046/j.1423-0410.2001.00010.x
|
[9] |
Dong YF, Fu WW, Zhou Z, et al. ABO blood group detection based on image processing technology[C]//2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2017: 655-659.
|
[10] |
Mujahid A, Dickert FL. Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting[J]. Sensors (Basel), 2015, 16(1): 51. doi: 10.3390/s16010051
|
[11] |
Sautner É, Papp K, Holczer E, et al. Detection of red blood cell surface antigens by probe-triggered cell collision and flow retardation in an autonomous microfluidic system[J]. Sci Rep, 2017, 7(1): 1008. doi: 10.1038/s41598-017-01166-9
|
[12] |
Karimi S, Mehrdel P, Farré-Lladós J, et al. A passive portable microfluidic blood-plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing[J]. Lab Chip, 2019, 19(19): 3249-3260. doi: 10.1039/C9LC00690G
|
[13] |
Kline TR, Runyon MK, Pothiawala M, et al. ABO, D blood typing and subtyping using plug-based microfluidics[J]. Anal Chem, 2008, 80(16): 6190-6197. doi: 10.1021/ac800485q
|
[14] |
Jy C, Huang YT, Chou HH, et al. Rapid and inexpensive blood typing on thermoplastic chips[J]. Lab Chip, 2015, 15(24): 4533-4541. doi: 10.1039/C5LC01172H
|
[15] |
Park J, Park JK. Finger-actuated microfluidic display for smart blood typing[J]. Anal Chem, 2019, 91(18): 11636-11642. doi: 10.1021/acs.analchem.9b02129
|
[16] |
Lu CH, Shih TS, Shih PC, et al. Finger-powered agglutination lab chip with CMOS image sensing for rapid point-of-care diagnosis applications[J]. Lab Chip, 2020, 20(2): 424-433. doi: 10.1039/C9LC00961B
|
[17] |
Chen YW, Li WT, Chang Y, et al. Blood-typing and irregular antibody screening through multi-channel microfluidic discs with surface antifouling modification[J]. Biomicrofluidics, 2019, 13(3): 034107. doi: 10.1063/1.5080463
|
[18] |
Chang YJ, Lin YT, Liao CC. Chamfer-type capillary stop valve and its microfluidic application to blood typing tests[J]. SLAS Technology, 2019, 24(2): 188-195. http://www.researchgate.net/publication/328521221_Chamfer-Type_Capillary_Stop_Valve_and_Its_Microfluidic_Application_to_Blood_Typing_Tests
|
[19] |
Zhai Y, Wang A, Koh D, et al. A robust, portable and backflow-free micromixing device based on both capillary-and vacuum-driven flows[J]. Lab Chip, 2018, 18(2): 276-284. doi: 10.1039/C7LC01077J
|
[20] |
Chang YJ, Fan YH, Chen SC, et al. An automatic Lab-on-disc system for blood typing[J]. SLAS Technology, 2018, 23(2): 172-178. http://www.ncbi.nlm.nih.gov/pubmed/29241020
|
[21] |
Martinez AW, Phillips ST, Butte MJ, et al. Patterned paper as a platform for inexpensive, low-volume, portable bioassays[J]. Angew Chem Int Ed Engl, 2007, 46(8): 1318-1320. doi: 10.1002/anie.200603817
|
[22] |
Songjaroen T, Dungchai W, Chailapakul O, et al. Blood separation on microfluidic paper-based analytical devices[J]. Lab Chip, 2012, 12(18): 3392-3398. doi: 10.1039/c2lc21299d
|
[23] |
Yamada K, Shibata H, Suzuki K, et al. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges[J]. Lab Chip, 2017, 17(7): 1206-1249. doi: 10.1039/C6LC01577H
|
[24] |
Ma J, Yan SQ, Miao CY, et al. Paper microfluidics for cell analysis[J]. Adv Healthc Mater, 2019, 8(1): e1801084. doi: 10.1002/adhm.201801084
|
[25] |
Li H, Steckl AJ. Paper microfluidics for point-of-care Blood-Based analysis and diagnostics[J]. Anal Chem, 2019, 91(1): 352-371. doi: 10.1021/acs.analchem.8b03636
|
[26] |
Songjaroen T, Primpray V, Manosarn T, et al. A simple and low-cost portable paper-based ABO blood typing device for point-of-care testing[J]. J Immunoassay Immunochem, 2018, 39(3): 292-307. doi: 10.1080/15321819.2018.1486856
|
[27] |
Cao R, Pan Z, Tang H, et al. Understanding the coffeering effect of red blood cells for engineering paper-based blood analysis devices[J]. Chem Eng J, 2020, 391: 123522. doi: 10.1016/j.cej.2019.123522
|
[28] |
Then WL, Li M, Mcliesh H, et al. The detection of blood group phenotypes using paper diagnostics[J]. Vox Sang, 2015, 108(2): 186-196. doi: 10.1111/vox.12195
|
[29] |
Li M, Then WL, Li L, et al. Paper-based device for rapid typing of secondary human blood groups[J]. Anal Bioanal Chem, 2014, 406(3): 669-677. doi: 10.1007/s00216-013-7494-9
|
[30] |
Henderson CA, Mcliesh H, Then WL, et al. Activity and longevity of antibody in paper-based blood typing diagnostics[J]. Frontiers in Chemistry, 2018, 6: 193. doi: 10.3389/fchem.2018.00193
|
[31] |
Ballerini DR, Li X, Shen W. An inexpensive thread-based system for simple and rapid blood grouping[J]. Anal Bioanal Chem, 2011, 399(5): 1869-1875. doi: 10.1007/s00216-010-4588-5
|
[32] |
Llopis F, Carbonell-Uberos F, Planelles MD, et al. A new microplate red blood cell monolayer technique for screening and identifying red blood cell antibodies[J]. Vox Sang, 1996, 70(3): 152-156. doi: 10.1111/j.1423-0410.1996.tb01314.x
|
[33] |
Llopis F, Carbonell-Uberos F, Planelles MD, et al. A monolayer coagglutination microplate technique for typing red blood cells[J]. Vox Sang, 1997, 72(1): 26-30. doi: 10.1159/000461953
|
[34] |
Spindler JH, Klüter H, Kerowgan M. A novel microplate agglutination method for blood grouping and reverse typing without the need for centrifugation[J]. Transfusion, 2001, 41(5): 627-632. doi: 10.1046/j.1537-2995.2001.41050627.x
|
[35] |
Sinor LT, Rachel JM, Beck ML, et al. Solid-phase ABO grouping and Rh typing[J]. Transfusion, 1985, 25(1): 21-23. doi: 10.1046/j.1537-2995.1985.25185116494.x
|
[36] |
Parker JL, Marcoux D, Hafleigh EB, et al. Modified microtiter tray method for blood typing[J]. Transfusion, 1978, 18(4): 417-422. doi: 10.1046/j.1537-2995.1978.18478251234.x
|
[37] |
Spindler JH, Kerowgan M, Eichler H, et al. Photometric evaluation of the solid-phase antiglobulin test using length measurement of the absorption curve[J]. Vox Sang, 1998, 74(1): 36-41. doi: 10.1046/j.1423-0410.1998.7410036.x
|
[38] |
Sandler SG, Langeberg A, Avery N, et al. A fully automated blood typing system forhospital transfusion services[J]. Transfusion, 2000, 40(2): 201-207. doi: 10.1046/j.1537-2995.2000.40020201.x
|
[39] |
Pipatpanukul C, Amarit R, Somboonkaew A, et al. Microfluidic PMMA-based microarray sensor chip with imaging analysis for ABO and RhD blood group typing[J]. Vox Sang, 2016, 110(1): 60-69. doi: 10.1111/vox.12313
|
[40] |
Lu Y, Shi W, Jiang L, et al. Rapid prototyping of paper--based microfluidics with wax for low-cost, portable bioassay[J]. Electrophoresis, 2009, 30(9): 1497-1500. doi: 10.1002/elps.200800563
|
[41] |
Carrilho E, Martinez AW, Whitesides GM. Understand-ing wax printing: a simple micropatterning process for paper-based microfluidics[J]. Anal Chem, 2009, 81(16): 7091-7095. doi: 10.1021/ac901071p
|
[42] |
Songjaroen T, Laiwattanapaisal W. Simultaneous forward and reverse ABO blood group typing using a paper-based device and barcode-like interpretation[J]. Anal Chim Acta, 2016, 921: 67-76. doi: 10.1016/j.aca.2016.03.047
|
[43] |
Noiphung J, Talalak K, Hongwarittorrn I, et al. A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups[J]. Biosens Bioelectron, 2015, 67: 485-489. doi: 10.1016/j.bios.2014.09.011
|
[44] |
Chen L, Wang X, Lu W, et al. Molecular imprinting: perspectives and applications[J]. Chem Soc Rev, 2016, 45(8): 2137-2211. doi: 10.1039/C6CS00061D
|
[45] |
Saylan Y, Akgönüllü S, Yavuz H, et al. Molecularly imprinted polymer based sensors for medical applications[J]. Sensors (Basel), 2019, 19(6): 1279. doi: 10.3390/s19061279
|
[46] |
Piletsky SS, Rabinowicz S, Yang Z, et al. Development of molecularly imprinted polymers specific for blood antigens for application in antibody-free blood typing[J]. Chem Commun (Camb), 2017, 53(11): 1793-1796. doi: 10.1039/C6CC08716G
|
[47] |
Huet M, Cubizolles M, Buhot A. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents[J]. Biosens Bioelectron, 2017, 93: 110-117. doi: 10.1016/j.bios.2016.09.068
|
[48] |
Huet M, Cubizolles M, Buhot A. Red blood cell agglutination for blood typing within passive microfluidic biochips[J]. High-throughput, 2018, 7(2): 10. doi: 10.3390/ht7020010
|
[49] |
Chen G, Chai HH, Yu L, et al. Smartphone supported backlight illumination and image acquisition for microfluidic-based point-of-care testing[J]. Biomed Opt Express, 2018, 9(10): 4604-4612. doi: 10.1364/BOE.9.004604
|
[50] |
Srivastava SK, Daggolu PR, Burgess SC, et al. Dielectrophoretic characterization of erythrocytes: positive ABO blood types[J]. Electrophoresis, 2008, 29(24): 5033-5046. doi: 10.1002/elps.200800166
|
[51] |
Mujahid A, Mustafa G, Dickert FL. Label-Free bioanalyte detection from nanometer to micrometer dimensions-molecular imprinting and QCMs[J]. Biosensors, 2018, 8(2): 52. doi: 10.3390/bios8020052
|
[52] |
Hayden O, Mann KJ, Krassnig S, et al. Biomimetic ABO blood-group typing[J]. Angew Chem Int Ed Engl, 2006, 45(16): 2626-2629. doi: 10.1002/anie.200502857
|
[53] |
Li Y, Jiang C. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96-well microplates[J]. Biosens Bioelectron, 2018, 119: 18-24. doi: 10.1016/j.bios.2018.07.067
|
[54] |
Wang J, Lin J, Huang Z, et al. Study of ABO blood types by combining membrane electrophoresis with surface-enhanced Raman spectroscopy[C]. Beijing, China: Society of Photo-Optical Instrumentation Engineers, 2012: 855323.
|
[55] |
Then WL, Aguilar M, Garnier G. Quantitative blood group typing using surface plasmon resonance[J]. Biosens Bioelectron, 2015, 73: 79-84. doi: 10.1016/j.bios.2015.05.053
|
[56] |
Kazuki N, Ushijima H, Akase S, et al. The rapid mea- surement of ABO blood type by using surface-plasmon resonance sensor[J]. Bunseki Kagaku, 1999, 48(7): 669-672. doi: 10.2116/bunsekikagaku.48.669
|
[57] |
Zhou J, Zeng Y, Wang X, et al. The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology[J]. Sens Actuators B: Chem, 2020, 304: 127391. doi: 10.1016/j.snb.2019.127391
|
[58] |
Charrière K, Rouleau A, Gaiffe O, et al. Biochip technology applied to an automated ABO compatibility test at the patient bedside[J]. Sens Actuators B Chem, 2015, 208: 67-74. doi: 10.1016/j.snb.2014.10.123
|
[59] |
Peungthum P, Sudprasert K, Amarit RA, et al. Surface plasmon resonance imaging for ABH antigen detection on red blood cells and in saliva: secretor status-related ABO subgroup identification[J]. Analyst, 2017, 142(9): 1471-1481. doi: 10.1039/C7AN00027H
|
[60] |
Li XM, Feng HB, Wang Y, et al. Capture of red blood cells onto optical sensor for rapid ABO blood group typing and erythrocyte counting[J]. Sens Actuators B Chem, 2018, 262: 411-417. doi: 10.1016/j.snb.2018.02.030
|
[61] |
St-Louis M. Molecular blood grouping of donors[J]. Transfus Apher Sci, 2014, 50(2): 175-182. doi: 10.1016/j.transci.2014.02.012
|
[62] |
Wagner FF, Flegel WA, Bittner R, et al. Molecular typing for blood group antigens within 40 min by direct polymerase chain reaction from plasma or serum[J]. Br J Haematol, 2017, 176(5): 814-821. doi: 10.1111/bjh.14469
|
[63] |
Polin H, Danzer M, Pröll J, et al. Introduction of a real-time-based blood-group genotyping approach[J]. Vox Sang, 2008, 95(2): 125-130. doi: 10.1111/j.1423-0410.2008.01067.x
|
[64] |
Moulds JM. Future of molecular testing for red blood cell antigens[J]. Clin Lab Med, 2010, 30(2): 419-429. doi: 10.1016/j.cll.2010.02.004
|
[65] |
Dammika PM, Morrissey YC, Alexander JS, et al. On-chip PCR amplification of genomic and viral templates in unprocessed whole blood[J]. Microfluid Nanofluidics, 2011, 10(3): 697-702. doi: 10.1007/s10404-010-0702-4
|
[66] |
Fürst D, Tsamadou C, Neuchel C, et al. next-generation sequencing technologies in blood group typing[J]. Transfus Med Hemother, 2020, 47(1): 4-13. doi: 10.1159/000504765
|
[67] |
Tounsi WA, Madgett TE, Avent ND. Complete RHD next-generation sequencing: establishment of reference RHD alleles[J]. Blood Advances, 2018, 2(20): 2713-2723. doi: 10.1182/bloodadvances.2018017871
|
[68] |
Henley RY, Carson S, Wanunu M. Studies of RNA sequence and structure using nanopores[J]. Prog Mol Biol Transl Sci, 2016, 139: 73-99. http://pubmedcentralcanada.ca/pmcc/articles/PMC5146985/
|