Volume 4 Issue 2
Dec.  2020
Turn off MathJax
Article Contents
Hongjun Gao, Gradimir Misevic. Microchip technology applications for blood group analysis[J]. Blood&Genomics, 2020, 4(2): 83-95. doi: 10.46701/BG.2020022020109
Citation: Hongjun Gao, Gradimir Misevic. Microchip technology applications for blood group analysis[J]. Blood&Genomics, 2020, 4(2): 83-95. doi: 10.46701/BG.2020022020109

Microchip technology applications for blood group analysis

doi: 10.46701/BG.2020022020109
More Information
  • Corresponding author: Hongjun Gao, Ph.D, Jiangsu LIBO Medicine Biotechnology Co., Ltd. 78 Dong Sheng West Road, Jiangyin, Jiangsu 214400, China. Tel: +86-13538270675. E-mail: gaochemistry@hotmail.com
  • Received Date: 2020-05-09
  • Accepted Date: 2020-07-31
  • Rev Recd Date: 2020-06-28
  • Available Online: 2021-07-01
  • Publish Date: 2020-12-30
  • Blood group analysis techniques are some of the most in demand immunological applications in clinical transfusion praxis and organ transplantation. In order to aid the advance towards higher throughput and increased sensitivity, analytical solutions dealing with a minimal amount of blood samples and the miniaturization of diagnostic equipment using microchip technologies have been evolving into an optimal solution. Here we review fabrication technologies for various types of microstructure on microchips, related operating procedures, and characterization approaches. Our focus is on examples of microchip technology and instrumentation used for blood group analysis ranging from classical serological methods of glycoprotein detection and solid phase assays, to nucleic acid amplification techniques. Molecular typing using microchip-based techniques is emerging as a supplement to standard serological methods. Microchip technology will play its key role to support blood group analysis at the molecular scale by using microliters of blood samples for extremely sensitive, quantitative, and high throughput analyses.

     

  • Abbreviations: POC, Point-of-Care; ISBT, the International Society of Blood Transfusion; RBCs, red blood cells; HDN, hemolytic disease of the newborn; MMT, microplate monolayer technique; NGS, next-generation sequencing; SERS, surface-enhanced Raman scattering; QCM, quartz crystal microbalance; µPAD, microfluidic paper-based analytical device; PDMS, polydimethylsiloxane; PEO, polyethylene oxide; PMMA, polymethyl methacrylate; PEGMA, polyethylene glycol methacrylate; MCM, microplate coagglutination method; MAM, microplate agglutination method; SPAM, solid-phase adherence method; SPRCA, solid-phase red cell adherence; MIT, molecular imprinting technology; MIPs, molecularly imprinted polymers; SPR, surface plasmon resonance; SPRi, surface plasmon resonance imaging; UV-vis, ultraviolet-visible; GNPs, gold nanoprisms; SNPs, single nucleotide polymorphisms; NAT, nucleic acid amplification techniques; PCR, polymerase chain reaction; LR-PCR, long-range polymerase chain reaction; Rh, Rhesus Macacus
    Conflict of interest: The authors have no conflict of interest to report.
  • loading
  • [1]
    Landsteiner K. Ueber Agglutinationserscheinungen normalen menschlichen Blutes[J]. Wien Klin Wochenschr, 1901, 46: 1132-1134. http://ci.nii.ac.jp/naid/10016218927
    [2]
    International Society of Blood Transfusion (ISBT). Ta-ble of blood group systems[EB/OL]. [2020-06-18]. http://www.isbtweb.org/fileadmin/user_upload/Table_of_blood_group_systems_v6.0_6th_August_2019.pdf.
    [3]
    Misevic G. ABO blood group system[J]. Asia-Pacific J Blood Type Gene, 2018, 2(2): 71-84.
    [4]
    Malomgre W, Neumeister B. Recent and future trends in blood group typing[J]. Anal Bioanal Chem, 2009, 393(5): 1443-1451. doi: 10.1007/s00216-008-2411-3
    [5]
    Langston MM, Procter JL, Cipolone KM, et al. Evaluation of the gel system for ABO grouping and D typing[J]. Transfusion, 1999, 39(3): 300-305. doi: 10.1046/j.1537-2995.1999.39399219288.x
    [6]
    Liu Z, Liu MH, Mercado T, et al. Extended blood group molecular typing and next-generation sequencing[J]. Transfus Med Rev, 2014, 28(4): 177-186. doi: 10.1016/j.tmrv.2014.08.003
    [7]
    Yamada A, Renault R, Chikina A, et al. T ransient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip[J]. Lab Chip, 2016, 16(24): 4691-4701. doi: 10.1039/C6LC01143H
    [8]
    Petrik J. Microarray technology: the future of blood testing?[J]. Vox Sang, 2001, 80(1): 1-11. doi: 10.1046/j.1423-0410.2001.00010.x
    [9]
    Dong YF, Fu WW, Zhou Z, et al. ABO blood group detection based on image processing technology[C]//2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2017: 655-659.
    [10]
    Mujahid A, Dickert FL. Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting[J]. Sensors (Basel), 2015, 16(1): 51. doi: 10.3390/s16010051
    [11]
    Sautner É, Papp K, Holczer E, et al. Detection of red blood cell surface antigens by probe-triggered cell collision and flow retardation in an autonomous microfluidic system[J]. Sci Rep, 2017, 7(1): 1008. doi: 10.1038/s41598-017-01166-9
    [12]
    Karimi S, Mehrdel P, Farré-Lladós J, et al. A passive portable microfluidic blood-plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing[J]. Lab Chip, 2019, 19(19): 3249-3260. doi: 10.1039/C9LC00690G
    [13]
    Kline TR, Runyon MK, Pothiawala M, et al. ABO, D blood typing and subtyping using plug-based microfluidics[J]. Anal Chem, 2008, 80(16): 6190-6197. doi: 10.1021/ac800485q
    [14]
    Jy C, Huang YT, Chou HH, et al. Rapid and inexpensive blood typing on thermoplastic chips[J]. Lab Chip, 2015, 15(24): 4533-4541. doi: 10.1039/C5LC01172H
    [15]
    Park J, Park JK. Finger-actuated microfluidic display for smart blood typing[J]. Anal Chem, 2019, 91(18): 11636-11642. doi: 10.1021/acs.analchem.9b02129
    [16]
    Lu CH, Shih TS, Shih PC, et al. Finger-powered agglutination lab chip with CMOS image sensing for rapid point-of-care diagnosis applications[J]. Lab Chip, 2020, 20(2): 424-433. doi: 10.1039/C9LC00961B
    [17]
    Chen YW, Li WT, Chang Y, et al. Blood-typing and irregular antibody screening through multi-channel microfluidic discs with surface antifouling modification[J]. Biomicrofluidics, 2019, 13(3): 034107. doi: 10.1063/1.5080463
    [18]
    Chang YJ, Lin YT, Liao CC. Chamfer-type capillary stop valve and its microfluidic application to blood typing tests[J]. SLAS Technology, 2019, 24(2): 188-195. http://www.researchgate.net/publication/328521221_Chamfer-Type_Capillary_Stop_Valve_and_Its_Microfluidic_Application_to_Blood_Typing_Tests
    [19]
    Zhai Y, Wang A, Koh D, et al. A robust, portable and backflow-free micromixing device based on both capillary-and vacuum-driven flows[J]. Lab Chip, 2018, 18(2): 276-284. doi: 10.1039/C7LC01077J
    [20]
    Chang YJ, Fan YH, Chen SC, et al. An automatic Lab-on-disc system for blood typing[J]. SLAS Technology, 2018, 23(2): 172-178. http://www.ncbi.nlm.nih.gov/pubmed/29241020
    [21]
    Martinez AW, Phillips ST, Butte MJ, et al. Patterned paper as a platform for inexpensive, low-volume, portable bioassays[J]. Angew Chem Int Ed Engl, 2007, 46(8): 1318-1320. doi: 10.1002/anie.200603817
    [22]
    Songjaroen T, Dungchai W, Chailapakul O, et al. Blood separation on microfluidic paper-based analytical devices[J]. Lab Chip, 2012, 12(18): 3392-3398. doi: 10.1039/c2lc21299d
    [23]
    Yamada K, Shibata H, Suzuki K, et al. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges[J]. Lab Chip, 2017, 17(7): 1206-1249. doi: 10.1039/C6LC01577H
    [24]
    Ma J, Yan SQ, Miao CY, et al. Paper microfluidics for cell analysis[J]. Adv Healthc Mater, 2019, 8(1): e1801084. doi: 10.1002/adhm.201801084
    [25]
    Li H, Steckl AJ. Paper microfluidics for point-of-care Blood-Based analysis and diagnostics[J]. Anal Chem, 2019, 91(1): 352-371. doi: 10.1021/acs.analchem.8b03636
    [26]
    Songjaroen T, Primpray V, Manosarn T, et al. A simple and low-cost portable paper-based ABO blood typing device for point-of-care testing[J]. J Immunoassay Immunochem, 2018, 39(3): 292-307. doi: 10.1080/15321819.2018.1486856
    [27]
    Cao R, Pan Z, Tang H, et al. Understanding the coffeering effect of red blood cells for engineering paper-based blood analysis devices[J]. Chem Eng J, 2020, 391: 123522. doi: 10.1016/j.cej.2019.123522
    [28]
    Then WL, Li M, Mcliesh H, et al. The detection of blood group phenotypes using paper diagnostics[J]. Vox Sang, 2015, 108(2): 186-196. doi: 10.1111/vox.12195
    [29]
    Li M, Then WL, Li L, et al. Paper-based device for rapid typing of secondary human blood groups[J]. Anal Bioanal Chem, 2014, 406(3): 669-677. doi: 10.1007/s00216-013-7494-9
    [30]
    Henderson CA, Mcliesh H, Then WL, et al. Activity and longevity of antibody in paper-based blood typing diagnostics[J]. Frontiers in Chemistry, 2018, 6: 193. doi: 10.3389/fchem.2018.00193
    [31]
    Ballerini DR, Li X, Shen W. An inexpensive thread-based system for simple and rapid blood grouping[J]. Anal Bioanal Chem, 2011, 399(5): 1869-1875. doi: 10.1007/s00216-010-4588-5
    [32]
    Llopis F, Carbonell-Uberos F, Planelles MD, et al. A new microplate red blood cell monolayer technique for screening and identifying red blood cell antibodies[J]. Vox Sang, 1996, 70(3): 152-156. doi: 10.1111/j.1423-0410.1996.tb01314.x
    [33]
    Llopis F, Carbonell-Uberos F, Planelles MD, et al. A monolayer coagglutination microplate technique for typing red blood cells[J]. Vox Sang, 1997, 72(1): 26-30. doi: 10.1159/000461953
    [34]
    Spindler JH, Klüter H, Kerowgan M. A novel microplate agglutination method for blood grouping and reverse typing without the need for centrifugation[J]. Transfusion, 2001, 41(5): 627-632. doi: 10.1046/j.1537-2995.2001.41050627.x
    [35]
    Sinor LT, Rachel JM, Beck ML, et al. Solid-phase ABO grouping and Rh typing[J]. Transfusion, 1985, 25(1): 21-23. doi: 10.1046/j.1537-2995.1985.25185116494.x
    [36]
    Parker JL, Marcoux D, Hafleigh EB, et al. Modified microtiter tray method for blood typing[J]. Transfusion, 1978, 18(4): 417-422. doi: 10.1046/j.1537-2995.1978.18478251234.x
    [37]
    Spindler JH, Kerowgan M, Eichler H, et al. Photometric evaluation of the solid-phase antiglobulin test using length measurement of the absorption curve[J]. Vox Sang, 1998, 74(1): 36-41. doi: 10.1046/j.1423-0410.1998.7410036.x
    [38]
    Sandler SG, Langeberg A, Avery N, et al. A fully automated blood typing system forhospital transfusion services[J]. Transfusion, 2000, 40(2): 201-207. doi: 10.1046/j.1537-2995.2000.40020201.x
    [39]
    Pipatpanukul C, Amarit R, Somboonkaew A, et al. Microfluidic PMMA-based microarray sensor chip with imaging analysis for ABO and RhD blood group typing[J]. Vox Sang, 2016, 110(1): 60-69. doi: 10.1111/vox.12313
    [40]
    Lu Y, Shi W, Jiang L, et al. Rapid prototyping of paper--based microfluidics with wax for low-cost, portable bioassay[J]. Electrophoresis, 2009, 30(9): 1497-1500. doi: 10.1002/elps.200800563
    [41]
    Carrilho E, Martinez AW, Whitesides GM. Understand-ing wax printing: a simple micropatterning process for paper-based microfluidics[J]. Anal Chem, 2009, 81(16): 7091-7095. doi: 10.1021/ac901071p
    [42]
    Songjaroen T, Laiwattanapaisal W. Simultaneous forward and reverse ABO blood group typing using a paper-based device and barcode-like interpretation[J]. Anal Chim Acta, 2016, 921: 67-76. doi: 10.1016/j.aca.2016.03.047
    [43]
    Noiphung J, Talalak K, Hongwarittorrn I, et al. A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups[J]. Biosens Bioelectron, 2015, 67: 485-489. doi: 10.1016/j.bios.2014.09.011
    [44]
    Chen L, Wang X, Lu W, et al. Molecular imprinting: perspectives and applications[J]. Chem Soc Rev, 2016, 45(8): 2137-2211. doi: 10.1039/C6CS00061D
    [45]
    Saylan Y, Akgönüllü S, Yavuz H, et al. Molecularly imprinted polymer based sensors for medical applications[J]. Sensors (Basel), 2019, 19(6): 1279. doi: 10.3390/s19061279
    [46]
    Piletsky SS, Rabinowicz S, Yang Z, et al. Development of molecularly imprinted polymers specific for blood antigens for application in antibody-free blood typing[J]. Chem Commun (Camb), 2017, 53(11): 1793-1796. doi: 10.1039/C6CC08716G
    [47]
    Huet M, Cubizolles M, Buhot A. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents[J]. Biosens Bioelectron, 2017, 93: 110-117. doi: 10.1016/j.bios.2016.09.068
    [48]
    Huet M, Cubizolles M, Buhot A. Red blood cell agglutination for blood typing within passive microfluidic biochips[J]. High-throughput, 2018, 7(2): 10. doi: 10.3390/ht7020010
    [49]
    Chen G, Chai HH, Yu L, et al. Smartphone supported backlight illumination and image acquisition for microfluidic-based point-of-care testing[J]. Biomed Opt Express, 2018, 9(10): 4604-4612. doi: 10.1364/BOE.9.004604
    [50]
    Srivastava SK, Daggolu PR, Burgess SC, et al. Dielectrophoretic characterization of erythrocytes: positive ABO blood types[J]. Electrophoresis, 2008, 29(24): 5033-5046. doi: 10.1002/elps.200800166
    [51]
    Mujahid A, Mustafa G, Dickert FL. Label-Free bioanalyte detection from nanometer to micrometer dimensions-molecular imprinting and QCMs[J]. Biosensors, 2018, 8(2): 52. doi: 10.3390/bios8020052
    [52]
    Hayden O, Mann KJ, Krassnig S, et al. Biomimetic ABO blood-group typing[J]. Angew Chem Int Ed Engl, 2006, 45(16): 2626-2629. doi: 10.1002/anie.200502857
    [53]
    Li Y, Jiang C. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96-well microplates[J]. Biosens Bioelectron, 2018, 119: 18-24. doi: 10.1016/j.bios.2018.07.067
    [54]
    Wang J, Lin J, Huang Z, et al. Study of ABO blood types by combining membrane electrophoresis with surface-enhanced Raman spectroscopy[C]. Beijing, China: Society of Photo-Optical Instrumentation Engineers, 2012: 855323.
    [55]
    Then WL, Aguilar M, Garnier G. Quantitative blood group typing using surface plasmon resonance[J]. Biosens Bioelectron, 2015, 73: 79-84. doi: 10.1016/j.bios.2015.05.053
    [56]
    Kazuki N, Ushijima H, Akase S, et al. The rapid mea- surement of ABO blood type by using surface-plasmon resonance sensor[J]. Bunseki Kagaku, 1999, 48(7): 669-672. doi: 10.2116/bunsekikagaku.48.669
    [57]
    Zhou J, Zeng Y, Wang X, et al. The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology[J]. Sens Actuators B: Chem, 2020, 304: 127391. doi: 10.1016/j.snb.2019.127391
    [58]
    Charrière K, Rouleau A, Gaiffe O, et al. Biochip technology applied to an automated ABO compatibility test at the patient bedside[J]. Sens Actuators B Chem, 2015, 208: 67-74. doi: 10.1016/j.snb.2014.10.123
    [59]
    Peungthum P, Sudprasert K, Amarit RA, et al. Surface plasmon resonance imaging for ABH antigen detection on red blood cells and in saliva: secretor status-related ABO subgroup identification[J]. Analyst, 2017, 142(9): 1471-1481. doi: 10.1039/C7AN00027H
    [60]
    Li XM, Feng HB, Wang Y, et al. Capture of red blood cells onto optical sensor for rapid ABO blood group typing and erythrocyte counting[J]. Sens Actuators B Chem, 2018, 262: 411-417. doi: 10.1016/j.snb.2018.02.030
    [61]
    St-Louis M. Molecular blood grouping of donors[J]. Transfus Apher Sci, 2014, 50(2): 175-182. doi: 10.1016/j.transci.2014.02.012
    [62]
    Wagner FF, Flegel WA, Bittner R, et al. Molecular typing for blood group antigens within 40 min by direct polymerase chain reaction from plasma or serum[J]. Br J Haematol, 2017, 176(5): 814-821. doi: 10.1111/bjh.14469
    [63]
    Polin H, Danzer M, Pröll J, et al. Introduction of a real-time-based blood-group genotyping approach[J]. Vox Sang, 2008, 95(2): 125-130. doi: 10.1111/j.1423-0410.2008.01067.x
    [64]
    Moulds JM. Future of molecular testing for red blood cell antigens[J]. Clin Lab Med, 2010, 30(2): 419-429. doi: 10.1016/j.cll.2010.02.004
    [65]
    Dammika PM, Morrissey YC, Alexander JS, et al. On-chip PCR amplification of genomic and viral templates in unprocessed whole blood[J]. Microfluid Nanofluidics, 2011, 10(3): 697-702. doi: 10.1007/s10404-010-0702-4
    [66]
    Fürst D, Tsamadou C, Neuchel C, et al. next-generation sequencing technologies in blood group typing[J]. Transfus Med Hemother, 2020, 47(1): 4-13. doi: 10.1159/000504765
    [67]
    Tounsi WA, Madgett TE, Avent ND. Complete RHD next-generation sequencing: establishment of reference RHD alleles[J]. Blood Advances, 2018, 2(20): 2713-2723. doi: 10.1182/bloodadvances.2018017871
    [68]
    Henley RY, Carson S, Wanunu M. Studies of RNA sequence and structure using nanopores[J]. Prog Mol Biol Transl Sci, 2016, 139: 73-99. http://pubmedcentralcanada.ca/pmcc/articles/PMC5146985/
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (140) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return