Yafei Tian1,2△, Yongping Zhang1△, Shaoyan Hu3, Lilan Yao4, Yijian Zhu2, Shenglong Qiao5, Daru Lu1,2*, Junjie Fan3*

1 NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China;
2 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
3 Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, Jiangsu 215000, China;
4 Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China;
5 MyGenostics Inc., Beijing 101300, China.

ABSTRACT
MYH9-related diseases (MYH9-RD) are a group of autosomal dominant diseases caused by mutations in the MYH9 gene, which are featured by thrombocytopenia, giant platelets and granulocyte cytoplasmic inclusion bodies. MYH9-RD patients generally suffer from bleeding syndromes, progressive kidney disease, deafness, or cataracts. Here, we reported on a case of MYH9-RD. A novel heterozygous mutation of MYH9 (c.2344-2345delGTinsTA, p.T782Y) was discovered by targeted sequencing technology. Immunofluorescence analysis of neutrophils confirmed abnormal aggregation of MYH9 protein. The results of this study should expand the MYH9 gene mutation spectrum and provide reference for subsequent researchers and genetic counseling.

Keywords: MYH9-related diseases (MYH9-RD), thrombocytopenia, p.V782Y mutation

INTRODUCTION
MYH9 (OMIM*160775) is a large gene localized on chromosome 22q12.3, spanning more than 106 kbp and composed of 41 exons[1-2]. It encodes non-muscle myosin heavy chain II A (NMMHC-II A), a cytoskeletalcontractile protein, which plays an important role in cytokinesis[3-4], cell migration[5-6], and signal transduction[7-8]. Mutations in MYH9 often lead to a rare, autosomal dominant disorder known as MYH9-related disease (MYH9-RD). MYH9-related diseases were initially described as four syndromes: May-Hegglin anomaly (MHA), Fechtner syndrome (FS), Sebastian syndrome (SBS), and Epstein syndrome (EPS)[9-10]. In recent years, it has been discovered that another autosomal dominant disease, Deafness, Autosomal Dominant 17 (DFNA17; OMIM# 603622), is also caused by mutations in the MYH9 gene[11-14]. It is recognized that all of these disorders actually represent different clinical presentations of the same
disease, presently known as MYH9-RD.

Regarding the prevalence of MYH9-RD, it's estimated more than 1 : 500,000, with about one-third of patients being sporadic cases. Due to the low prevalence and varying clinical manifestations, some patients only present with mild skin petechiae and ecchymosis which can be easily misdiagnosed as idiopathic thrombocytopenic purpura (ITP), and therefore receive incorrect clinical treatment. The correct diagnosis of hereditary chronic thrombocytopenia is crucial for planning appropriate treatment. Here, we reported on a case of MYH9-RD which had been misdiagnosed as ITP. The results of this case study may deepen the understanding of MYH9-RD for subsequent researchers and genetic counseling.

CASE REPORT

A 6-year-old girl was hospitalized in the Children's Hospital of Soochow University in October 2019 due to "intermittent epistaxis and abnormal blood tests for more than 1 year". Analysis of the proband's family medical history showed that the child and her immediate family members had no other diseases related to vision, kidney function or hearing development (Table 1). All participating individuals provided informed consent in accordance with the Declaration of Helsinki. This study was approved by the Medical Ethics Committee of the Children's Hospital of Soochow University, China.

Table 1 Clinical phenotypes in MYH9-RD and the p. V782Y mutation patient

<table>
<thead>
<tr>
<th>Phenotypes</th>
<th>Syndromes</th>
<th>MHA</th>
<th>FS</th>
<th>EPS</th>
<th>SBS</th>
<th>DFNA17</th>
<th>The case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Inclusion bodies</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hearing loss</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>/</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>Nephritis</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cataract</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>/</td>
<td>-</td>
</tr>
</tbody>
</table>

*p means there is a corresponding phenotype; **−** represents the opposite; */−* means the phenotype is late-onset; **−** means that it is unknown whether the phenotype is delayed.

In this study, the proband was examined at the local hospital for "epistaxis" at the age of four. Her blood test indicated that platelets were 30×10^9/L, and other examinations showed no obvious abnormalities. In September 2019, after ITP treatment, her peripheral blood test showed EB virus IgG (+), CMV IgG (+) and IgM (−), and she was given gamma globulin therapy. Bone marrow aspiration revealed 8 megakaryocytes and few platelets. Her platelet content rose to 80×10^9/L, and she was discharged from hospital. Soon after being discharged from the hospital, the blood test showed that the platelets had reduced again to 30–50×10^9/L, and 6 capsules of prednisone acetate day were given per day. The local outpatient clinic gradually reduced the dose (about 1 capsule per week) and gave acetic acid. Prednisone was taken orally at 3 capsules/day, but her platelets and hemoglobin still gradually decreased.

After learning about the patient's medical history, etc., we conducted a detailed evaluation of the patient. Physical examination revealed no abnormality. Bone marrow biopsy showed that hematopoietic tissue was rare. Routine blood examination: white blood cells, 9.26×10^9/L; red blood cells, 2.9×10^12/L; lymphocytes, 71.2%; hemoglobin, 104 g/L; total number of platelets, 22×10^9/L; neutrophils, 22.7%. In view of the patient's conditions, carbazochrome sodium sulfonate was given to prevent bleeding; vitamin C to improve vascular circulation; compound glycyr rhizin to protect the liver; prednisone acetate and ganciclovir to resist the virus. Thrombopoietin was given subcutaneously to the patient, but the platelet increase was not significant. Through high-depth targeted sequencing to detect genes related to the blood system, we found one predictive damaging mutation site (NM_002473, c. 2344-2345delGTinsTA, P. T782Y) related to the proband's phenotypes (Fig. 1). The evidences for the mutation site were PS2, PS3, PM2, and PP3. According to ACMG guidelines, this variant is determined to be pathogenic.

The motor domain of NMMHC-II A is located at the N-terminus, which is encoded by exons 2–19. The N-terminus contains the actin binding site and the ATP hydrolysis domain. Exons 19 and 20 encode the binding region of the myosin light chain, which (sometimes called the "neck") pivots to convert the force generated by the motor domain into motion^{1−2}. The mutation (p. T782Y) was located in the key structural domain of the neck encoded by exon 19 (Fig. 1B). This may affect the normal rotation of this region and cause abnormal protein function.

To verify our diagnosis, three members of the entire family underwent blood smear examinations and immunofluorescence staining of the NMMHC-II A protein. The blood smear result of the proband was normal and there were no giant platelets (Fig. 2B), which was consistent with our previous blood routine examinations. In our previous inspections, there was suggestion that the platelet volume had a tendency to increase. The MPV of the patient in the last result was 13.6, which was a little higher than the normal value. However, "Döhlelike" inclusion bodies could be seen in neutrophils (Fig. 2C).
Although not all MYH9-RDs have inclusion bodies, the presence of these MYH9 related inclusion bodies helps distinguish MYH9 abnormalities from other hematological abnormalities with high specificity and sensitivity\(^{[15-16]}\). The detection of abnormal NMMHC-ⅡA localization by immunofluorescence staining is considered by many experts as the gold standard for the diagnosis of MYH9-RD\(^{[17-19]}\). Therefore, immunofluorescence analysis was performed to confirm the diagnosis of MYH9-RD. As can be seen from Fig. 2D and Fig. 2E, compared with normal people (parents' result), the proband with p.T782Y mutation had abnormal aggregation of NMMHC-ⅡA protein in neutrophils.

DISCUSSION

MYH9-RD is the most prevalent form of inherited thrombocytopenia worldwide\(^{[20]}\). Patients may present with thrombocytopenia and granulocyte inclusions, or with without nephritis or sensorineural hearing loss. Patients with MYH9-RD present with compli-
The main manifestations are thrombocytopenia, giant platelets, and basophilic Döhle-like inclusions in peripheral blood leukocytes.[23]

In this case, the proband showed thrombocytopenia, granulocyte inclusions, and long-term epistaxis. The proband initially received presumptive ITP therapy, but did not respond to intravenous immunoglobulin or corticosteroids. Based on persistent thrombocytopenia and poor response to ITP treatment, she was diagnosed with thrombocytopenia syndrome of unknown etiology. Since the patient had epistaxis at a very young age and conventional immunotherapy was ineffective in the past, combined with the increasing tendency of platelet volume, after excluding other factors, we considered that thrombocytopenia might be caused by genetic factors such as blood system related genes. After high-depth targeted sequencing of key genes related to the blood system, the report concluded a novel mutation in the MYH9 gene (c. 2344-2345delGTinsTA, p. V782Y). The mutation occurred in the key structural domain of NMHC- II A, and a variety of prediction software programs showed that the mutation was damaging. An immunofluorescence assay confirmed that this mutation could also cause abnormal aggregation of the protein. According to the location of the mutation, clusters of NMM- II A can be detected as oval-spindle-shaped, oval-shaped, or round inclusion bodies[9].

Fig. 2 Examination of peripheral blood smears and immunofluorescence staining. A: Control. B: The volume of platelets had not increased. C: After routine blood smear staining, the aggregates of MYH9 protein in the neutrophil granulocyte cytoplasm could be identified as weakly basophilic (sky blue) inclusion bodies, called "Döhle-like" bodies (↗). D: Parental immunofluorescence staining control result. E: Immunofluorescence staining of typical NMHC- II A aggregates in the cytoplasm of granulocytes from the patient with MYH9-RD with NMHC- II A antibody.
Here, the patient's protein showed "oval-spindle-shaped" shape, similar to one case reported by Althaus et al.[9]. The different shapes of NMMHC-I/IIA clusters may have varying degrees of impact on cell function, which requires further studied.

According to the patient's clinical and experimental data, the patient was finally diagnosed as MYH9-RD. Although it was proved that the mutation was responsible for the patient's clinical phenotypes, more reports or animal experiments are required to further clarify the correlation between the genotype and phenotype of the mutation and the underlying mechanism.

Acknowledgments

This work was supported by grants from the Key Project of Chongqing Natural Science Foundation [grant number cstc2020jcyj-zdxm0180] and Chongqing Natural Science Foundation [grant number cstc2020jcyj-msxm3584].

References

Received 26 April 2021, Revised 31 May 2021, Accepted 18 June 2021